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Preface

Complex oxides represent a class of materials with a plethora of fascinating physical

properties. The intriguing interplay of charge, spin, and orbital ordering in these systems

coupled with lattice effects opens up a scientifically rewarding playground for both fun-

damental and application-oriented research. In particular transition metal oxides (TMO)

continue to attract a great deal of attention both experimentally and theoretically span-

ning over many decades, due to their several interesting properties, e.g. Mott transition,

High-Tc superconductivity, ferromagnetism, antiferromagnetism, low-spin/high-spin tran-

sition, ferroelectricity, antiferroelectricity, colossal magnetoresistance, charge ordering etc.

These systems have been theoretically investigated using Density functional theory

based tools as well as using model Hamiltonians. The first principles density functional

based calculations, which take into account all the structural and chemical aspects cor-

rectly, fail to predict the ground state properties of such materials since the presence of

strongly electron-electron interaction has a crucial role to play. On the other hand, model

Hamiltonian-based calculations have the obvious limitation that the parameters of the

model Hamiltonian are vastly unknown and therefore fails to capture the material spe-

cific complexity of the oxide materials. In recent years there has been a significant effort

to combine these two approaches in terms of building up a first principles derived model

Hamiltonian, followed by the solution of the model Hamiltonian by means of many body

techniques. Since often the electronic structure of these oxide materials involve only few

active degrees of freedom (e.g Cu dx2−y2 as in case of High-Tc cuprates ), a crucial step

in the model Hamiltonian building involves filtering out the informations provided by a

full first-principles calculation to arrive to a few-orbital, low energy description starting

from a full first principles calculation. This has been achieved in recent years in terms of

N-th order muffin tin orbital (NMTO) based downfolding method, that has been vastly

employed in the present thesis to derive low energy, few orbital model Hamiltonian. The

present thesis contain a investigation of properties of few chosen transition metal oxides

based on Density functional theory (DFT) as well as first principles derived model Hamil-

tonian approach. In cases, the first principles derived model Hamiltonians have been

solved with many body tools like, quantum Monte Carlo (QMC), dynamical mean field

theory (DMFT) and exact diagonalization (ED). The theoretical methods that we used

in the present study are described in Chapter-2. Hereafter, the result of our studies is

presented.

Chapter-3 describes the study of electronic and magnetic structure of a spin-gapped

system CuTe2O5. Recent experimental results for this system revealed that the structural

dimer of this system does not coincide with the magnetic dimers. Even the detection of the

magnetic structure based on previous theoretical studies were not unambiguous. There-



fore we derived the low-energy spin model for CuTe2O5 using first-principles electronic

structure calculations based on the NMTO-downfolding technique to explain the underly-

ing magnetic structure of the system. We checked the validity of our model by computing

the magnetic susceptibility with quantum Monte Carlo technique and comparing it with

available experimental data.

In Chapter-4, we present the investigation of the correlated electronic structure of

La2CuO4 in the so-called T and T′ crystal structures which serve as the parent compounds

for the hole-doped and electron-doped high Tc superconducting compounds, using NMTO-

based downfolding technique in combination with dynamical mean field theory (DMFT).

La2CuO4, which naturally forms in T structure, was reported to made to form in T′

structure by means of special thin-film synthesis technique of replacing La by isovalent

rare earth (RE) (RE = Y, Lu, Sm, Gd. . .) ions (A. Tsukada et al., Solid State Com-

mun. 133, 427 (2005)). The experimental studies on T′-structured La2CuO4 revealed

contrasting properties to that in T structure, which we examined by means of electronic

structure calculations.

In Chapter-5, we present an investigation of the kinetic energy driven antiferromag-

netic phases in electron doped double perovskite system Sr2FeMoO6 using first-principles

density-functional calculations, together with exact diagonalization of Fe-Mo Hamiltonian

constructed in a first-principles Wannier-function basis. We used La3+ ion to dope the

system which cause a net electron doping into the system. We considered the whole con-

centration range from x=0.0 (i.e Sr2FeMoO6) to x=2.0 (i.e. La2FeMoO6) and studied the

relative stability of the various magnetic phases as one increases the carrier concentration

through the increased doping of La.

In Chapter-6, we explore the origin of the ferromagnetic Tc trend in Cr-based double

perovskite series, Sr2CrB′O6 (B′=W/Re/Os) with increasing number of valence electron

count. We compared the situation with La-doped Sr2FeMoO6 double perovskite series

which show very different magnetic behavior as a function of increasing number of va-

lence electrons. In addition, we explore the possibility of large magneto-optic signals in

these materials, which may be important for device application.

Chapter-7, contains a study of the electronic and magnetic properties of the ferromag-

netic semiconducting double perovskite compound La2NiMnO6, which show a magnetic

transition close to room temperature and additionally exhibit an interesting magnetic

field sensitive dielectric anomaly as a function of temperature. We used an extended

Kugel-Khomskii model to explain the ferromagnetism in the system. We investigated the

second order coupling between spin and phonon using density functional perturbation



theory (DFPT), which is given by the change in Γ-point IR active phonon frequencies

with the change in magnetic ordering between magnetic sites, to explain the experimen-

tally observed dielectric anomaly. Additionally we calculated Born effective charges Z∗

for La2NiMnO6 using DFPT.

Finally conclusion of the entire study has been given in Chapter-8.
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Chapter 1

Introduction

1.1 General introduction about Oxides

Complex oxides, especially Transition Metal Oxides (TMO) present a class of materials

exhibiting a variety of structures and properties. The outstanding range of electronic and

magnetic properties exhibited by transition metal oxides is particularly noteworthy.

The basic structural unit of this class of materials is metal-oxygen polyhedra (MOn,

where M is the TM atom, O is the oxygen and n is an integer) such as octahedra, square

pyramid, square planar, tetrahedra, pentagonal bipyramid, trigonal bipyramid etc (some

of these structural units are presented in Fig. 1.1). The strong tendency of surrounding

oxygens towards the negative valence, remove the s electrons from the TM atom and

subject the d orbitals of TM ions to an anisotropic field, known as Crystal field. Under

the influence of this field each d orbital is affected differently and how a particular d

orbital will be affected depends upon the geometry of the oxygen surrounding. This

results into splitting of the energy levels of the five fold degenerate (including spin, 10-

fold degenerate) d orbitals in the atomic limit. The strength of this splitting, known as

crystal field splitting, depends on the following factors:

• Symmetry of the oxygen cage.

• Strength of TM-O covalency.

The most common geometry is the octahedral geometry, where six oxygen ligands

form an octahedron around the metal ion as shown in Fig. 1.1(b). For a cubic structure

the d-orbitals split into two sets : a higher energy level of two-fold (including spin, four-

fold) degenerate eg orbital and a lower energy level of three-fold (including spin, six-fold)

degenerate t2g orbitals. For a perfect octahedral symmetry, the lobes of the eg orbitals,

formed by dx2−y2 and d3z2 orbitals, are pointed directly towards the oxygen atoms and

therefore feel stronger electrostatic field than the t2g orbitals, which are constituted by

dxy, dyz and dxz orbitals with lobes directed in between two oxygen atoms. If the degen-

erate eg states are occupied partially, it generally leads to further lifting of degeneracy

of the ground state. The perfect octahedral geometry distort spontaneously driven by

the combined effect of two phonon modes Q2 and Q3, as represented in Fig. 1.2. This

spontaneous distortion removes the degeneracy and reduce the energy of the system to

stable energy. This effect is known as Jahn-Teller effect, named after Hermann Jahn
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Fig. 1.1: Symmetry and corresponding Crystal field splitting of d levels for some known regular TM-O
polyhedra: (b) Octahedra, (d) Square pyramid, (e) Square planar, (f) Tetrahedra. Panels (a) and (c)
show the additional splitting in the d levels due to tensile and compressive JT distortions in octahedral
symmetry respectively.
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TM

O

Q3Q2

Fig. 1.2: The two Jahn-Teller modes Q2 and Q3.

and Edward Teller, who first give the full explanation of this effect [1]. The energy level

diagram for tetragonal Jahn-Teller distortion is shown in Fig. 1.1(a) and (c).

Two extensions of octahedral geometry are square pyramidal and square planar sym-

metry. The first one can be achieved by the removal of one of the apical oxygen ions

along z axis, the second symmetry is result of removal of both apical oxygens of an oc-

tahedra along z axis. The respective structures and energy level diagrams are shown in

Figs. 1.1(d) and (e).

The nature of crystal field splitting is exactly opposite in case of tetrahedral geometry

compared to octahedral symmetry. The e orbitals in this case are energetically more

stabilized than t2, as shown in Fig. 1.1(f). The splitting pattern can be explained by an

analogous line of reasoning as explained for the octahedral symmetry. The crystal field

splitting is much less in this case than octahedral symmetry because of the fact that none

of the d orbitals are exactly directed towards the ligand atoms.

In transition metals, the energy scale associated with crystal field splitting is typically

much smaller than the bandwidth, however in case of TMO the crystal field splitting is

comparable with the band width of d orbitals and may compete with Hund’s exchange

energy (JH) and the d orbital valence bandwidth to create many dramatic effects, such

as metal-insulator transition, low spin to high spin transition with application of external

perturbations, like temperature, pressure, doping.

In TMOs, as the direct overlap between TM d orbitals is negligibly small, the d

electrons only can move through hybridization with oxygen 2p-bands. The magnitude of

this indirect overlap depends on the following factors:

• The orientation of the d orbitals with respect to the connecting O p orbitals, that

are responsible for the low energy phenomenon.
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Fig. 1.3: Examples of configurations for transition-metal d orbitals which are bridged by ligand p orbitals
(Taken from Ref.[2]).

• The relative position of oxygen p-levels (εp) and transition metal d -levels (εd), i.e.

the value of charge transfer energy ∆ = εd − εp.

For example in case of early 3d transition metal (Ti, V, Cr, Mn) oxides having octahe-

dral surrounding of oxygen ions the Fermi level lies in the manifold of t2g bands. Therefore

the net overlap between two adjacent TM d orbital takes place through the hybridization

between t2g bands and oxygen 2p bands. As the t2g orbitals point away from the oxygen

2p orbital it forms weak π hybridization with oxygen (as shown in the bottom panel

of Fig. 1.3). Furthermore, low nuclear charge of early TM, makes the relative energy

difference of d and p bands large. On the other hand in case of late 3d TM (Fe, Co,

Ni, Cu) based oxides, for the same octahedral symmetry, as the t2g levels are completely

occupied, eg levels play the main role to create interesting physical phenomenon. Because

of the favorable geometric orientation of the eg orbital with respect to oxygen 2p orbital,

as shown in the top panel of Fig. 1.3, the hybridization is stronger. Additionally, the

larger charge on the TM nuclei decreases the chemical potential of d electrons and thus

the relative energy difference of d and p bands.

The TM-d orbitals in Transition metal oxides, possess a strong intra-atomic Coulomb

interaction which support local magnetic moment, as well as a strong hybridization with

oxygen which leads to formation of delocalized band. These two effects compete to form

a broad range of physical properties. The TMOs are found to show conductivities rang-

ing from good metals (e.g. RuO2, ReO3, LaNiO3) to strong insulators (e.g. BaTiO3)

and often show phenomenon like metal-insulator transition (e.g. V2O3, La1−xSrxVO3).

They show a wide range of magnetic properties ranging from ferromagnetism (e.g. CrO2,
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La0.5Sr0.5MnO3) to anti ferromagnetism (e.g. NiO, LaCrO3) to ferrimagnetism (e.g.

La2NiMnO6) to complicated spiral magnetism (YMnO3, YMn2O5). In addition, tempera-

ture, pressure, field or doping induced change in magnetic as well as spin and orbital states

has been observed in this class of materials (e.g. La0.5Ca0.5MnO3, LaCoO3). Many oxides

possess switchable orientation states as in ferroelectric (e.g. BaTiO3, KNbO3) and ferroe-

lastic (e.g. Gd2(MoO4)3) materials. Some of the oxides exhibit more than one primary

ferroic order parameter (ferromagnetism, ferroelectricity, ferroelasticity) simultaneously in

a single phase, known as multiferroic material (e.g. BiFeO3, TbMn2O5). They show effect

such as Colossal magnetoresistance (CMR) (e.g. Sr2FeMoO6) and Giant magnetoresis-

tance (GMR) as well as high temperature superconductivity (e.g. BaxLa5−xCu5O5(3−y),

La2−xSrxCuO4). In the following we list some important classes of TMO discussed in

recent literature based on their properties.

=⇒ Ferroics: Materials possessing two or more orientation states or domains that can

be switched from one to another through the application of one or more appropriate forces

belong to a general class called ferroics. Three known ferroic orders are : ferromagnetism,

ferroelectricity and ferroelasticity. Ferromagnetic materials exhibit a long-range ordering

phenomenon at the atomic level which causes the unpaired electron spins to line up parallel

to each other. Some examples of ferromagnetic oxides with high transition temperature

(Tc) are : CrO2 (Tc = 386 K), Sr2FeMoO6 (Tc = 450 K), Y3Fe5O12 (Tc = 560 K) etc.

In a ferroelectric, spontaneous electric polarization is altered by the application of

an electric field. ferroelectric materials can be used to make capacitors with tunable ca-

pacitance. By symmetry considerations they are required to be also piezoelectric and

pyroelectric. The combined properties of ferroelectricity, piezoelectricity, and pyroelec-

tricity make ferroelectric capacitors very useful, e.g. for sensor applications. Ferroelectric

capacitors are used in medical ultrasound machines, high quality infrared cameras, fire sen-

sors, sonar, vibration sensors and even fuel injectors on diesel engines. PbTiO3, BaTiO3,

KNbO3 and the Bi2An−1BnO3n+3 family of oxides are ferroelectrics, whereas PbZrO3 and

NaNbO3 are antiferroelectrics.

In a ferroelastic, the direction of spontaneous strain in a domain is switched by the

application of mechanical stress. The properties of domains and their walls in a ferroelastic

material can be very useful in mineral physics and mineralogy research. Examples of

ferroelastic and antiferroelastic TMOs are LaCoO3 and LaMnO3, respectively.

In a multiferroic material more than one above mentioned ferroic order exist in a single

phase and may couple to each other, as demonstrated in Fig. 1.4. In recent years most of

the research on multiferroics has focused on materials that combine some form of magnetic

order (ferromagnetic, antiferromagnetic, non-collinear, ...) with ferroelectricity, so that

the term ”multiferroics” is now often used synonymous with ”magnetic ferroelectrics”.

Multiferroics have immense potential for technological device applications and at the

same time they pose very interesting and rich fundamental physics problems. Examples
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Fig. 1.4: Schematic diagram showing the coexistence of at least two ferroic forms of ordering leads to
additional interactions. From Ref:[4].

of such materials are :

Ferroelectric-ferromagnetic: Bi9Ti3Fe5O27

Ferroelectric-antiferromagnetic: YMnO3, HoMnO3

Antiferroelectric-antiferromagnetic: BiFeO3

It is also possible to induce such ferroic order in material by means of many external

perturbations, known as secondary ferroics. For example SrTiO3, where ferroelectricity

can be induced through application of epitaxial strain.

=⇒ Superconductors : Superconductors, those who show zero electrical resistivity

below a certain temperature and form a perfect diamagnet, are known since 1911 after

discovery of superconductivity in murcury by Kamerlingh-Onnes, for which the transition

temperature was found to be∼ 4.2 K. Subsequently, many metals, alloys and inter-metallic

compounds were found, but the highest Tc was limited to 23.2 K in the Nb3Ge alloy [5].

The discovery of the high-temperature superconductivity in 1986 in BaxLa5−xCu5O5(3−y)

[6] with Tc ∼ 30 K has opened a new era of research in superconducting materials. This

invention leads to discovery of several superconductors which show superconductivity at

temperature higher than boiling point of liquid-nitrogen temperature (77K). This was

first achieved by Chu and co-workers [7] for nominal composition Y1.2Ba0.8CuO4−y, where

reported Tc was 92 K. Later on different groups [8]-[10] identified that the composition

responsible for the superconductivity at 90 K is YBa2CuO7−y.

The success of discovery of superconductivity above boiling point of liquid nitrogen

provide immense encouragements to search new superconducting materials. Following this

path in 1988 Maeda et.al. [11] reported 105 K transition temperature in the multiphase

sample Bi-Sr-Ca-CuO compound. The highest Tc of 110 K was obtained in the Bi-Sr-
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Ca-CuO compound having composition Bi2Sr2Ca2Cu3O10 [12, 13]. Later many other

cuprates were discovered which exceed this value of Tc, such as Tl-Ba-Ca-CuO (120 K)

[14], HgBa2Ca2Cu3Ox (133 K) [15], HgBa2Ca2Cu2Ox (153 K) [16].

Iron-based superconductors is another bunch of materials that has gained many serious

attention recently in the field of High-Tc superconductivity. Interest in their superconduct-

ing properties began in 2006 with the discovery of superconductivity in LaFePO at 4 K [18]

and gained much greater attention in 2008 after the analogous material LaFeAs(O,F)[17]

was found to superconducting up to 43 K under pressure [19]. By replacing the La atoms

with other rare-earth elements and modulating the structural parameters, new supercon-

ductors were discovered and Tc was quickly enhanced in SmFeAsO1−xFx, CeFeAsO1−xFx,

PrFeAsO1−xFx, and NdFeAsO1−xFx, to above 50 K [20]-[23].

=⇒Materials exhibiting Colossal magnetoresistance (CMR) : The magnetoresistane

(MR) is defined as the change of electrical resistance of a material upon application of

magnetic field. It is generally defined by,

MR = [∆ρ/ρ(O)] = [ρ(H)− ρ(O)]/ρ(O) (1.1)

where ρ(H) and ρ(O) are the resistivities at a given temperature in the presence

and absence of a magnetic field, H, respectively. It has been observed that the mix-

valent oxide of Manganese, called ’rare-earth Manganites’ that undergo a ferromagnetic

to paramagnetic transitions upon increasing the temperature, exhibit a high negative

MR (∼ 80-90%) close to the Tc, at a field of a few Tesla [24]. This phenomenon is

called ‘Colossal Magnetoresistance’ (CMR). These materials have continuously drawn at-

tention from the physicists because of an extremely rich and intriguing phase diagram,

and several unusual transport and optical properties. At low temperatures, a variety of

phases such as antiferromagnetic insulator (AI), ferromagnetic insulator (FI), ferromag-

netic metal (FM), charge and orbitally orbitally ordered insulator (COI), etc are found.

There occurs several metal insulator transitions in this compound, as a function of doping,

temperature, and magnetic field. While the CMR in the manganese oxides have been hot

topic of research for past several years, a number of systems other than manganese oxide

based perovskites have been synthesized which have shown to develop CMR or TMR

(tunneling magneto resistance) effects. These include systems like perovskite-derived

Ruddlesden-Popper phases Ln2−xSr1+xMn2O7 (where Ln is a trivalent rare-earth), double

perovskites Sr2FeMoO6 and Sr2FeReO6, (Tl, In)-manganese pyrochlores, chalcospinels as

such FeCr2S4 and Fe0.5Cu0.5Cr2S4, layered rare-earth iodide like GdI2.

1.2 Theoretical methods to study oxides

In order to explain the above mentioned properties it is necessary to understand the

underlying electronic structure first, which is complex in general and difficult to calcu-
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late because of the strong electron-electron correlation effect. On theoretical front, this

problem has been attacked from two point of views:

1. On one hand, using ab-initio calculations which take into account all the structural

and chemical aspect correctly, but based on single particle approximation where the

electron-electron correlation is treated in a mean field manner, such as Hartree-Fock

or Density functional theory (DFT).

2. On the other hand, using models such as Hubbard or Anderson impurity models,

which treat the important electron-electron correlation in a improved way, but the

parameters of the model Hamiltonian are vastly unknown.

Both approaches have made tremendous progress in the last decades. The DFT cal-

culations within local density approximation (LDA), in which the correlation as well as

exchange interaction of the Coulomb interaction is only treated by means of a local den-

sity, is unexpectedly successful to explain physical properties of many materials, implying

that electronic correlations are rather weak in these materials. But it fails sometimes

to describe properties of materials where electronic correlation is strong, such as tran-

sition metal oxides. One of the crucial reason for this failure is that the problem of

self-interaction is treated in a averaged way in LDA, which is explicitly taken into ac-

count in both Self interaction correction (SIC) method [25] and Hartree-Fock method

[26]. Both the methods are quite successful to improve the localized description of d elec-

trons in TMOs. However, a serious problem of these methods is the absence of Coulomb

interaction screening effects that leads to strong overestimation of effective Coulomb pa-

rameter U [27, 28]. As a result the energy gap values obtained following these methods

are always overestimated. The problem of screening is addressed in a rigorous way in the

GW approximation (GWA) [29, 30], in which one electron spectrum is modified by self

energy that is defined by Greens function G and screened energy dependent Coulomb

interaction potential W. This approach is based on many-electron theory with perturba-

tion series preserving first order term in W. Many real materials including simple metals,

semiconductors and insulators are well described within GW calculations. With certain

approximations good results were also obtained for Mott insulators such as NiO [31]. How-

ever this method has two major shortcomings: (i) it can not describe properly strongly

correlated metals where higher order terms in W need to be included, (ii) it requires

significant computer time expenses.

As the electronic and magnetic properties of many strongly correlated systems are

primarily controlled by a limited number of states lying near the Fermi level, one can

combine the DFT based first principles electronic structure calculations with many body

models, formulated in the restricted Hilbert space of states close to the Fermi level. Such

a construction is expected to describe the effects that are not captured by LDA. The

basic steps of this approach can be summarized by the flow chart given in Fig. 1.5. One
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NMTO−downfolding method

Construction of the low energy, few band Hamiltonian 

Hubbard model
t−J model
Heisenberg model

QMC

DMFT

Peturbative approach

Density functional theory (DFT)
LDA band structure

Include crrelation

Many body techniques:

Physical properties

Exact diagonalization

Fig. 1.5: Schematic diagram of the combined approach.

of the crucial step is the construction of one-electron part of the model Hamiltonian in a

well localized Wannier basis. To do so, one of the promising way is the N th order muffin

tin orbital (NMTO) based downfolding method [32], which provides maximally localized

Wannier functions without explicitly calculating the corresponding Blöch functions. This

method derives a low-energy Hamiltonian by an energy selective, downfolding process

that integrates out the high energy degrees of freedom. The effective orbitals that define

the low energy Hamiltonian is nothing but the Wannier functions and they are maximally

localized through the construction. Then the many body Hamiltonian constructed in

the basis of these DFT derived Wannier functions can be solved in terms of many body

methods like, quantum Monte Calrlo method [33], exact diagonalization (ED), dynamical

mean field theory (DMFT) [34]. A detail description of theoretical methods involved in

such an approach is given in Chapter-2.

1.3 Systems under study

♣ Low dimensional quantum spin systems : Quantum spin systems are compounds

in which spins are small in value (S=1/2, 1) and therefore leads to the reduction of the
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relevant degrees of freedom to a spin variable Si, such as in Heisenberg Hamiltonian,

H =
∑
i,j

JijSi.Sj (1.2)

where Si is the spin operator located at the lattice site i and Jij denotes the strength of

the exchange interaction. The quantum fluctuations are therefore important and leads to

properties that are not obtained in their classical counterparts.

A strong motivation of studying such systems has been driven by the importance for

understanding the mechanism of high Tc superconductivity as well as for their applications

in the field of quantum computers. Though these systems are structurally three dimen-

sional, but the anisotropy in the interaction between magnetic ions reduce the effective

dimension of the underlying magnetic structure of such systems and provide a simple

model to study many phenomena of general interest: magnetic field induced quantum

phase transitions and critical points, the frustration (i.e. the effect of competing interac-

tions) and the effect of doping impurities. For quantum spin system based on transition

metal oxides the factors that reduce the effective dimension are :

• An enlarged distance or missing bridging oxygen between two TM sites.

• A TM-O-TM path with an angle different from 180◦.

• Lone pair active cations such as As3+, Se4+, Te4+, Pb2+ etc.

In this thesis we focus on a special class of low dimensional quantum spin systems

(QSS) that exhibit a gap in their spin excitation spectra. The magnitude of the gap (∆) is

the difference between a singlet (total spin S=0) ground state and a triplet (S=1) excited

state and proportional to the strongest exchange interaction (J) between two magnetic

ions (i.e. ∆ . J). They have spin-disordered ground states, i.e. the spin-spin correlations

in the ground state are short -ranged, which can broadly be described as quantum spin

liquids (QSL). Formation of such states is favored by quantum fluctuations, which is

inversely proportional to the effective dimension of the system and spin at each magnetic

site. In experiments, the presence of the gap ∆ is confirmed through measurement of

properties like susceptibility, χ, which goes to zero exponentially at low temperature (T )

as,

χ ∼ exp(−∆/kBT ) (1.3)

Some well known examples of spin gap (SG) AFMs are given below:

1. Spin-Peierls compounds: A spin-Peierls chain is a Heisenberg, AF, S=1/2 chain on

an elastic lattice, which at low temperature show a spontaneous dimerization of the

lattice allowing a lowering of the magnetic free energy due to the formation of a spin-

singlet ground state and opening of a finite energy gap in the magnetic excitation
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spectrum. The magnitude of the gap is related to the degree of dimerization and

hence to the degree of lattice distortion. The critical temperature below which the

spin-Peierls transition takes place, is given by TSP ∼ |J |exp(−1/λ), where J is the

exchange interaction between adjacent spins and λ is the electron-phonon coupling.

As the presence of interchain interactions typically drives quasi-1D systems towards

long range magnetic order, only a selected family of compounds with particularly

strong spin-phonon coupling have been found to exhibit a spin-Peierls transition.

For example many organic materials: TTF-CuBDT [35]-[36], TTF-CuS4C4(CF3)4

[37, 38], MEM-(TCNQ)2 [39] etc, where large inter-chain separation and weak van

der Waals interaction between adjacent flat organic molecules favor the dominance

of magnetoelastic effects over inter-chain ordering. The first transition metal oxide

based system which show spin-Peierls transition was CuGeO3 [40] and later on many

TMOs have been found, such as NaV2O5 [41], TiOBr and TiOCl [42] etc, which show

spin-Peierls or spin-Peierls like (combined with charge or orbital ordering) transition.

2. Spin ladders: A spin ladder system consists of two or more spin chains coupled by

rungs (Fig. 1.6). The nearest neighbor intra-chain and rung exchange interactions

are of strengths of JC and JR respectively. The ground state of these systems

depends on the number of spin chains. If the number of the legs is even, the ground

state becomes non-magnetic with a finite energy gap to the excited states [43]; if it is

odd, the energy gap collapses [44]. To understand this situation Dagotto et.al. [45]

assumed a simple limit for a spin 1/2 system in which the exchange coupling JR is

much stronger than the coupling along the chains. The advantage of this idealization

is that the intra-chain coupling in this case can be treated as a perturbation and

therefore the exact ground state is the product state of singlets along the rungs,

which is given by,

|ψs〉 = (| ↑↓〉 − | ↓↑〉)/
√

2 (1.4)

An S=1 excitation may be created by promoting one of the rung singlet to the S=1

triplet,

|ψt〉 = [| ↑↑〉, (| ↑↓〉 − | ↓↑〉)/
√

2, | ↓↓〉] (1.5)

The weak coupling along the chains gives rise to a propagating S=1 magnon with

a dispersion,

w(k) = JR + JCcosk (1.6)
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JC

J
R

Fig. 1.6: The simplest ladder model consists of two spin chains. JC and JR represents the exchange
coupling along the spin chain and along the rung of the ladder respectively.

The generated spin gap is,

∆ = w(π) ' JR − JC (1.7)

The two spin correlations decay exponentially along the chains showing that the

ground state is a quantum spin liquid.

The first experimentally realized series of even and odd-leg ladder structures was

provided by the family of compounds Srn−1Cun+1O2n consists of planes of weakly-

coupled ladders of (n+1)/2 chains [46, 47]. For n=3 and 5, one gets the two-chain

and three chain ladder compounds SrCu2O3 and Sr2Cu3O5 respectively. While in

case of SrCu2O3 the susceptibility shows a exponential decay at low temperature,

which is a signature of spin gap, the second compound ( Sr2Cu3O5) shows a gap-

less excitation spectrum. Experimental studies confirm this theoretically predicted

difference between even and odd-leg S=1/2 Hiesenberg AFM ladders [48].

3. Haldane gap antiferromagnets: Haldane first proposed that, in contrast to the the

gapless ground state of a chain with half-odd-integer spin (which follow Lieb-Schultz-

Mattis theorem [49]), the chains with integer spins have a gap in the excitation

spectra, which is called Haldane gap [50]. This leads to important differences in

the correlation functions. In the first case they show power law behavior and in

the second case exponential behavior. This conjecture has been backed up with

considerable experimental and theoretical evidence [51]. Many Haldane gap (HG)

AFMs have been discovered so far, which include many TM oxide based materials,

such as S=1 compound Y2BaNiO5 [52] and Tl2Ru2O7 [53]. Y2BaNiO5 [52] is a

charge transfer insulator containing Ni+2 (S=1) chain. The ground state of this

system is spin disordered and the spin excitation spectrum is separated by a HG of

magnitude from the ground state.
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To study a low-dimensional QSS it is necessary to gain knowledge of the spin model,

which will define the underlying exchange network of the system. Since often the nature

of this exchange network is not possible to extract from the crystal structure, a micro-

scopic investigation for this purpose is essential, which is carried for a spin-gapped system

CuTe2O5 in Chapter 3.

♣ High-temperature Cuprate superconductors:

Fig. 1.7: Phase diagram of electron and hole doped superconductors, showing superconductivity (SC),
antiferromagnetic (AF), pseudogap, and normal-metal regions. Taken from Ref-[55].

The parent compounds of high-temperature cuprate superconductors with general

chemical formula R2CuO4 (R is a rear-earth element) are known to be antiferromag-

netic charge-transfer insulators. The structure is formed by square planar copper-oxygen

(CuO2) layer separated by charge reservoir layers. The superconducting order originate

from the two dimensional charge dynamics of the doped charge carriers in the CuO2

planes. The two dimensional AFM order gets subsided with the concentration of doping

and superconducting order sets in as the doping concentration increases beyond a critical

value. The carrier introduced into the cuprates is either an electron or a hole. While the

hole-doped superconductors have been studied extensively from both theoretical and ex-

perimental approach, the electron doped cuprates are small in number and less explored.

All though the superconducting order parameter of electron doped is of the same sym-

metry as in case of hole-doped cuprates, namely dx2−y2 , but they differ in many respects.

Most remarkable difference has been observed in their phase diagrams with respect to the

doping concentration, which exhibit an asymmetric behavior (as shown in Fig. 1.7).

Considering the phase diagram for hole doped compound La2−xSrxCuO4 and electron

doped compound Nd2−xCexCuO4 as shown in Fig. 1.7, the noticeable differences are:
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Fig. 1.8: Crystal structure of T (left panel) and T′ (right panel) structures. The rare-earth, Cu, and
O atoms are represented by the large, mediums and small sized balls, respectively. The in-plane and
out-of-plane oxygen atoms are represented by dark and light shades, respectively.

1. While the antiferromagnetic order disappears with a small carrier concentration (x

∼ 3%) in the holedoped cuprate La2xSrxCuO4 (LSCO), it persists up to x=0.15 for

the electron doped cuprate Nd2−xCexCuO4.

2. The electron doping range for superconductivity is much narrower than hole doped

compounds.

3. These two ground states occur in much closer proximity to each other and may even

coincide unlike in the hole-doped materials.

The crystal structure of the parent compounds corresponding to hole doped and elec-

tron doped compounds are also different. The parent materials for hole doped cuprate

crystallize in T structure which has CuO6 octahedra, whereas for electron doped they

crystallize in T′ structure that is characterized by a shift of oxygen (O2) in the apical

position to the position directly below or above the oxygen (O1) in the CuO2 plane (see

Fig. 4.2). The T structure is formed with large rare-earth ions, such as La3+ ions, while

the T′ structure is formed with smaller rare-earth ions, such as Pr3+, Nd3+, Sm3+, Eu3+,

and Gd3+[56]. Interestingly, La2CuO4 lies almost at the borderline of the T-phase stability

and serves as the parent compound for hole-doped superconducting cuprates as well as for

electron doped superconducting cuprates. Recently it has also shown that while La2CuO4

in the T structure is strongly insulating, the same in T′ structure appears to be conducting

with a difference in resistivity of orders of magnitude [57]. While this finding hints toward

an interesting implication on mechanism of superconductivity, the experimental situation
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is faced with difficulties [58] such as the issue of strain effect (since the fabrication was

carried out by thin-film synthesis technique), oxygen content of the sample, etc. Therefore

for the benefit of understanding the mechanism of high-temperature superconductivity we

have carried out investigation of the electronic structure of La2CuO4 in T and T′ phase

using first principles techniques, which is devoid of experimental difficulties concerning

synthesis. Details of this investigation has been given in Chapter-4.

♣ Double perovskite system: The general formula of a Double perovskite oxide

compound is AA′BB′O6, where A and A′ represent large electropositive rare-earth cation,

B and B′ represent small TM cations. The structure is basically defined by the arrange-

ment of the B cation sublattice and three known forms of such arrangements are: random,

rock salt, and layered. Most of the Double perovskites, synthesized so far are of random

type. The B and B′ cations order crystallographically, if their normal oxidation states,

number of valence electrons and ionic radii are considerably different. They mostly order

in rock salt manner, which is formed by an alternate arrangement of corner sharing BO6

and B′O6 octahedra along all three crystallographic axes (see Fig. 1.9).

Fig. 1.9: A rock-salt ordered double perovskite structure (A2BB′O6).

The ideal structure is cubic, but undergoes symmetry lowering due to structural dis-

tortions. The source of distortions can be of many origins, such as,

• Due to the mismatch of the relative sizes of the cations, which can be quantified in
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terms of tolerance factor f , defined as

f =

rA + rA′

2
+ rO

√
2(
rB + rB′

2
− rO)

(1.8)

where rA, rA′ , rB, rB′ and rO are the ionic radii of the respective A, A′, B, B′ and

oxygen ions respectively. The ideal cubic structure is obtained for f=1 and for f

< 1 a GdFeO3 kind of distortion takes place originates from the cooperative tilting

rotation of BO6 octahedra.

• The First order Jahn-Teller distortions, solely of electronic origin, occurs due to the

presence of partially filled degenerate t2g or eg states and is particularly strong in

case of eg symmetry, as discussed earlier.

• Other structural distortions are based on off-centering mechanisms, such as second

order Jahn-Teller distortion operates on the d0 cations at the octahedral B/B′ site

and drives the ion to go out-of-centre. Another mechanism is lone-pair effect, which

operates in perovskite with A site cations with ns2 valence electronic configuration,

for example Pb2+, Bi3+.

The choice of B and B′ ions, provide the tunability of B-O-B′ interaction, giving rise

to a variety of magnetic properties such as ferromagnetism, antiferromagnetism, ferrimag-

netism, and electronic properties such as metallic, half metallic, and insulating [59, 60],

as illustrated in table inserted in Fig 1.3.

Perhaps the most studied member of this series that arose much interest is Sr2FeMoO6

(SFMO), where magnetic Fe sites and non-magnetic Mo sites are arranged in a rock-salt

manner (Fig. 1.9). The unusually high ferromagnetic transition temperature in SFMO

was rationalized [61, 62] in terms of a kinetic-energy driven mechanism which produces

a negative spin polarization at otherwise nonmagnetic site such as Mo. Very recently, an

kinetic-energy driven antiferromagnetic phase has been predicted beyond certain doping

concentration for a 2D dimensional and single band model electron doped system [63].

This prediction has been verified by taking into account all the structural and chemical

aspects correctly of a real system in Chapter-5. The trivalent La ion doped Sr2FeMoO6

exactly meets the criteria of such system, where doping with x amount of La3+ ion cor-

responds to doping of x electron per formula unit in the conduction band.

The discovery of above room temperature ferromagnetic transition temperature in

Sr2FeMoO6 also promotes many intensive research to search new double perovskite ma-

terials with higher Tc through the variation of the metallic/magnetic ions on the B and

B′ sites as well as by electron doping. Though sufficient attempts have been dedicated

to both, Tc was found to be boosted much more efficiently by moving to different choices

of B and B′ ions. The microscopic understanding of this increase, however, has not been
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Fig. 1.10: Structure, tolerance factor (f), and magnetic properties of various double perovskites. Taken
from Ref:[59].

.
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achieved. In Chapter-6 we probe this issue through density functional theory (DFT)

based calculations together with exact diagonalization of model Hamiltonian constructed

in a first-principles derived Wannier function basis. Chapter-7 contains a study of the

electronic and magnetic properties of the ferromagnetic semiconducting double perovskite

compound La2NiMnO6, which shows a magnetic near room temperature and has been re-

ported to exhibit an interesting magnetic field sensitive dielectric anomaly as a function

of temperature [64].

Finally, in Chapter-8 we sum up all the important results made in this thesis.
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Chapter 2

Theoretical methods

2.1 Introduction

A real system consists of heavy positively charged particles (nuclei) and lighter negatively

charged particles (electrons) and the basic interaction among them is electrostatic or

Coulombic. Then the problem that we have to deal with is many body problem that can

be described by the many body Hamiltonian:

H = −
∑ ~2

2MI

∇2
I −

∑ ~2

2mi

∇2
i +

e2

2

∑
I,J

∑
J 6=I

ZIZJ
|RI −RJ |

+
e2

2

∑
i,j

∑
j 6=i

1

|rI − rJ |
− e2

∑
I

∑
i

ZI
|RI − ri|

(2.1)

where, RI = {RI , I = 1, · · ·P} is the coordinate set of P ions and ri = {ri, i =

1, · · ·N} is that of electrons. ZI and MI are charge and mass of ion cores and m is

electron mass. The first and second term represent the kinetic energy of ion (TN(R))

and electron (Te(r)), respectively and last three terms represent coulomb interaction

between ions (VII (R)), electrons (Vee (r)), ions and electrons (Vext (R,r)), respectively.

To find out the corresponding many body wave function ψn(R, r) we need to solve the

Schrödinger’s equation:

Hψn(R, r) = εnψn(R, r) (2.2)

The two-body nature of coulomb interaction prevents this equation to be solved exactly

even for very small systems. Therefor some approximations need to be carried out. In

1927, Born and Oppenheimer [1] simplified the problem in the first step by decoupling the

motion of ions and electrons. They argued that, electrons being much lighter than ions,

moves much faster in solid than that of ions. Therefore ions can be considered as fixed

with respect to electron motion. Thus for a fixed ionic configuration the Hamiltonian for

a system of N interacting electrons takes the form

Hel = Te(r) + VII(Ra) + Vext(r; Ra) + Vee(r) (2.3)

where the constant ion-ion interaction term VII(Ra) is called Madelung energy and is

calculated classically. Though the quantum many body problem obtained after this ap-

proximation is much simpler than the original one, but still far too difficult to solve.
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Density Functional theory (DFT)

Several approaches exist to transform this many body problem to an effective single par-

ticle problem, in which the system of interacting electrons are mapped into a system of

non-interacting quantum mechanical particles that approximates the behavior of original

system. Two distinct approaches have been put forward in this direction: wave func-

tion based approaches [2, 3, 4] like Hartree, Hartree-Fock, configuration-interaction etc,

and density functional theory [5, 6, 7]. The theoretical study carried out in this thesis is

primarily Density functional theory (DFT) based, a description of which is given in §: 2.2.

Following the combined approach that has been described in the introductory chapter

we used the N th order muffin tin orbital (NMTO) method to calculate the single-particle

parts of correlated Hamiltonian, such as hopping integrals, on site energies, which is

discussed in §: 2.3. Finally, the techniques to solve the correlated Hamiltonian, like

Stochastic Series expansion (SSE) of quantum Monte Carlo method, Dynamical Mean

Field theory (DMFT) and exact diagonalization (ED) are described in §: 2.4.

.

2.2 Density Functional theory (DFT)

Density functional theory (DFT) is one of the most successful approach to theoretical

prediction of structures and properties of atoms, molecules and solids with an eventual

aim of designing of new materials. Within DFT [5, 6] all aspects of the electronic structure

of a system of N interacting electrons in an external coulomb potential Vext, created by

the fixed ionic configuration are completely determined by the electronic charge density

ρ(r), which is a function of position of a single electron. This is a drastic simplification,

since the many-body wave functions Ψ(r), which is function of 3N variable, need not to

be explicitly specified. Although the root of density functional theory is in the Thomas-

Fermi model [8, 9], modern DFT rests on two fundamental mathematical theorems proved

by Kohn and Hohenberg [5] and the derivation of a set of equations by Kohn and Sham

[6].

Hohenberg-Kohn (HK) theorem

The first theorem of HK states that, there is an one to one correspondence between exter-

nal potential Vext and the ground state electron density ρ(r), i.e. the external potential

is uniquely determined by the electron density of a system. An immediate consequence

is that the ground state expectation value of any observable Ô is a unique functional of

the exact ground state electron density :

〈Ψ|Ô|Ψ〉 = O[ρ] (2.4)

Considering Ô to be the Hamiltonian Ĥ,

Ĥ = T̂ + V̂ + V̂ext (2.5)
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where T̂ is the kinetic energy term and V̂ represents the electron electron Coulomb inter-

action, the ground state total energy takes the form,

E[ρ(r)] = F [ρ(r)] +

∫
Vext(r)ρ(r)dr (2.6)

The first term,

F [ρ(r)] = 〈Ψ|T̂ + V̂ |Ψ〉 (2.7)

is the universal density functional for any many electron system.

The second theorem of HK defines an important property of the energy functional :

The exact ground state energy (E0) is given by the global minimum of E[ρ(r)], and the

ground state density is the density that minimizes E[ρ(r)]. That is, for a trial density

ρ̃(r) such that ρ̃(r) ≥ 0 and
∫
ρ̃(r)dr = N ,

E0 ≤ E[ρ̃(r)] (2.8)

Kohn-Sham equations

In the energy functional the main unknown part is the universal functional F [ρ], which

consists of all many body interactions. Kohn and Sham introduced a further development

on the universal functional F [ρ] by mapping the ρ(r) of ”interacting N electrons” into

that of a system of non-interacting electrons. For this system of non-interacting electrons

the universal functional F [ρ] can be written as,

F [ρ(r)] = T0[ρ(r)] +
e2

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + Exc[ρ(r)] (2.9)

where T0[ρ(r)] is the functional for the kinetic energy (KE) of a the non-interacting

electrons and the second term is the classical electrostatic contribution (the Hartree term).

All many body effects have been now accumulated in the last term Exc[ρ(r)], known as

the exchange correlation energy.

The energy functional takes form:

EKS[ρ] =

∫
Vext(r)ρ(r)dr + T0[ρ(r)] +

e2

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + Exc[ρ(r)] (2.10)

The corresponding KS Hamiltonian can be written as:

HKS =

(
−}2

2m

)
O2 + Veff (2.11)

where

Veff (r) = Vext(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δExc[ρ]

δρ(r)

= Vext + VHartree + Vxc (2.12)
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The exact ground state density ρ(r) of N electron system is:

ρ(r) =
N∑
i=1

|ψi(r)|2 (2.13)

where the single-particle wave functions ψi(r) are the N lowest-energy solutions of the

Kohn- Sham equation,

ĤKSψi(r) = εiψi(r) (2.14)

Since the Hartree part and the exchange-correlation term depend on the density ρ(r),

which in turn depends on the solution of KS equations (ψi(r)), the Kohn-Sham equations

need to be solved iteratively until the solution is self consistent. The procedure is the

following: some starting density ρ0 is guessed, and a initial KS Hamiltonian HKS1 is

constructed with it. The eigenvalue problem is solved, which results in a set of ψ1 from

which a new density ρ1 can be derived. If the new density differs from the old one by

an amount more than a given critical value, the density for the next step is evaluated

through the mixing of these two densities depending on the choice of mixing scheme. It

is used to construct the Hamiltonian for next iteration, which will yield a ρ2, etc. The

procedure will continue until the density converge to a final density ρf which generates

a HKSf which yields as solution again ρf . This final density is then consistent with the

Hamiltonian (see the flow chart given in Fig. 2.1).

Extension to spin polarized systems

For spin polarized systems the electron density is composed of two independent spin

densities,

ρ = ρ↑ + ρ↓ (2.15)

As the exchange-correlation (xc) potential is different for each spin channel, it transforms

to the form,

Vxc,s[ρ↑, ρ↓] =
δExc[ρ↑, ρ↓]

δρs(r)
(2.16)

where s denotes spin degrees of freedom (↑ or ↓). The spin polarized KS equations

are: [(
−}2

2m

)
O2 + Veff,s

]
ψi,s(r) = εi,sψi,s(r) (2.17)

Thus there are two sets of single electron wave functions, one for spin up electrons

and one for spin down electrons.
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Fig. 2.1: DFT self consistent cycle.

2.2.1 Exchange correlation functional

As xc energy Exc, which includes all many body interactions, has a very complicated

expression which is not known explicitly, approximations are needed to convert the xc en-

ergy functional to some known form. Up to now, many simplified forms of this functional

have been proposed, where most of them are based on local or quasi local approximation,

in which the xc energy at position r depends on the local charge density or the local

charge density and its first derivative.

Local density approximation

The simplest of these descriptions is called the Local Density Approximation (LDA),

where the xc energy of a real system is expressed by the electronic charge density corre-

sponds to that of a homogeneous electron gas. Therefore the xc energy is given by,

ELDA
xc =

∫
εLDAxc (ρ(r))ρ(r)dr (2.18)

where εxc[ρ] is the exchange-correlation energy per electron in a homogeneous gas with

electron density ρ(r). In practice, the xc energy density is always treated as a sum of
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individual exchange and correlation contributions,

εLDAxc (ρ) = εLDAx (ρ) + εLDAc (ρ) (2.19)

In a uniform electron gas, the exchange part εLDAx [ρ] is given by the Dirac’s expression,

εLDAx (ρ) = −0.458

rs
(2.20)

here rs is the mean interelectronic distance and given by,

4π

3
r3
s = ρ−1 (2.21)

The correlation part is more complex and E.P.Wigner [10] first estimated it by,

εLDAc ≈ 0.44

rs + 7.8
(2.22)

Later, Ceperlay and Alder [11] gave more accurate estimate based on the quantum

Monte Carlo simulations. This correlation functional is exact within numerical accuracy

and has been parametrized by Perdew and Zunger [12], Vosko- Wilk -Nusair [13], John

P. Perdew and Yue Wang [14] etc.

For spin polarized system the xc energy density depends not only on the electron

density ρ, but also depends on the magnetization density ζ = (ρ↑− ρ↓)/(ρ↑ + ρ↓). It is in

general evaluated by the interpolation between the fully-polarized (εPxc) and unpolarized

(εUxc) xc energy densities using the interpolation function that depends on ζ. Excellent

approximate expressions for the interpolation function f(ζ) are available, such as proposed

by Barth and Hedin [15], by Vosko et.al. [13].

By construction, LDA is expected to work well with systems in which the electronic

charge density is slowly varying, but surprisingly it gives quite good results also in case

of non-homogeneous systems (see review by R.O. Jones and O. Gunnarsson [16]). The

reasons for such a surprising work is suggested to be related with facts that:

• Only the spherical average of the xc hole influences the energy, i.e. xc energy is

given by,

Exc[ρ] = −1

2

∫
ρ(r)

(
1

R(r)

)
dr (2.23)

where,
1

R(r)
=

∫
ρ̃xc(r, r

′)

|r − r′|
dr′ (2.24)

and ρ̃xc is the xc hole, which is expressed in terms of pair correlation function g̃(r, r′)

as,

ρ̃xc(r, r
′) = ρ(r′)[g̃(r, r′)− 1] (2.25)
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• LDA fulfills the sum rule that xc hole contain exactly one electron, i.e.∫
ρ̃LDAxc (r, r′)dr′ =

∫
ρ(r)g̃ [|r− r′|, ρ(r)] dr′ = −1 (2.26)

LDA is quite successful to explain phenomenon that involves energies related to the

motion of ions, i.e. of the order of 1 eV and fails to reproduce phenomenon that involves

very small energy scales, for example the phenomenon of superconductivity involves en-

ergy scales of a few degrees kelvin.

Generalized gradient approximation

One natural way to take into account the inhomogeneities in the electron density to some

extend is to make xc energy depend not only on the local value of the density, but also

on the gradient of density. Within generalized gradient approximation, the xc energy

functional can be expressed as,

EGGA
xc [ρ] =

∫
εxc(ρ(r), | 5 ρ(r)|)ρ(r)dr =

∫
ρ(r)εxc[ρ(r)]Fxc[ρ(r),5ρ(r)]dr (2.27)

where the function Fxc is an enhancement factor that modifies the LDA expression.

One of the widely used form of Fxc was given by Perdew-Wang (PW91) [17] in 1991.

Later on, a particularly simple form was introduced by Perdew, Bruke and Ernzerhof

(PBE) [18] by modifying PW91, which simplifies PW91 significantly though retaining the

important features of PW91.

Although GGA performs better than LDA to produce many physical properties, such

as the structural, magnetic properties of real materials, the systematic improvement is

not obvious. For example, it overestimates the electric polarization for a polar system

[19]. In spite of the improved treatment of the inhomogeneities of electron density, it

is not sufficient to describe the properties of the systems where local electron electron

correlation is strong and plays the significant role to determine many properties, such as

in case of transition metal oxides. Therefore to take the local Coulomb interaction into

account, it is necessary to go beyond LDA/GGA.

LDA+U

”LDA+U” involves LSDA or GGA type calculations coupled with an additional orbital

dependent interaction in a Hartree-Fock like manner. The additional interaction is usually

considered only for highly localized orbitals, such as d and f orbitals. The generalized

LDA+U functional is defined as follows:

ELDA+U [ρσ(r), {nσ}] = ELSDA/GGA[ρ(r)] + EU [{nI,σm }]− Edc[nI,σ] (2.28)
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where the nI,σm are orbital occupancies for atom I experiencing the on-site Hubbard

interactions, m is the magnetic quantum number, σ is the spin index and nI,σ =
∑

m n
I,σ
m .

The last term is included to correct the double counting. For the Hartree-Fock like term

EU [{nI,σm }] Liechtenstein et.al. [20] has formulated a rotationally invariant form,

EU [{nI,σm }] =
1

2

∑
{m},σ

〈m1m3|
1

r− r′
|m2m4〉nσm1m2

n−σm3m4

−
(
〈m1m3|

1

r− r′
|m2m4〉 − 〈m1m3|

1

r− r′
|m4m2〉

)
nσm1m2

nσm3m4
(2.29)

The matrix elements can be expressed in terms of complex spherical harmonics and

effective Slater integrals F k [21] as,

〈m1m3|
1

r− r′
|m2m4〉 =

∑
k

ak(m1,m2,m3,m4)F
k (2.30)

where 0 ≤ k ≤ 2l and

ak(m1,m2,m3,m4) =
4π

2k + 1

k∑
q=−k

〈lm1|Ykq|lm2〉〈lm3|Y †kq|lm4〉 (2.31)

For d electrons one needs F 0, F 2 and F 4 and these can be specified by two adjustable

parameters in term of effective on site Coulomb and Stoner parameters U and J through

the relations,

U = F 0 (2.32)

J =
F 2 + F 4

14
(2.33)

For f electrons the expression for J is ,

J =
286F 2 + 195F 4 + 250F 6

6435
(2.34)

Within this approach the double counting correction term is expressed as,

Edc[n
I,σ] =

1

2
UN(N − 1)− 1

2
J [N↑(N↑ − 1) +N↓(N↓ − 1)] (2.35)

where Nσ = Tr(nσm1m2
) and N = N↑ +N↓.

Later, Dudarev et.al. [22] presented a simplified approach, in which the total energy

functional is expressed as,

ELSDA+U = ELSDA +
U − J

2

∑
σ

[(∑
m1

nσm1m1

)
−

(∑
m1m2

nσm1m2
nσm2m1

)]
(2.36)
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In this approach only the difference (U-J ) is used.

The applicability of LSDA+U approach depends on the choice of values of U and

J. Though there exists constraint DFT approach to calculate the U and J values from

an ab initio way, it is often found to over estimate the values. The most common way

to determine the parameter U therefore lies in seeking a good agreement of calculated

properties with the experimental results.

2.2.2 Different DFT based first principles methods

To solve the single-particle Kohn-Sham Eqn.( 2.14) and to obtain the eigenvalues (band

structure) and eigenfunctions, one has to choose an appropriate basis set {φα(r)} to

expand the KS wave-functions Ψi(r),

Ψi(r) =
∑
α

Ci
αφα(r) (2.37)

The choice of the basis set {φα(r)} depends on the specification of a given problem,

such as the crystal symmetry, the nature of the involved elements of the periodic table.

Several basis methods have been developed in last four decades and are widely used for

band structure calculations of solids. Depending on the choice of basis functions these

methods can be broadly classified into two categories, fixed basis set method and partial

basis set method.

(a) Methods using fixed basis sets

This method is based on energy independent basis sets or fixed basis sets, like tight

binding method using linear combination of atomic orbitals (LCAO) type basis [23], or-

thogonalized plane wave (OPW) method within a pseudopotential scheme using plane

waves orthogonalized to core states as the basis set [24, 25], which transform the KS

equations ( 2.14) to the eigenvalue problem,∑
β

(H̃αβ − εiÕαβ)C̃i
β = 0, j = 1, 2, .., N (2.38)

where,

H̃αβ =

∫
d3rφ∗α(r)Ĥ(r)φβ (2.39)

Õαβ =

∫
d3rφ∗α(r)φβ (2.40)

Plane wave basis pseudopotential method

Many first principles methods based on DFT adopt plane waves as the basis functions to

solve KS equation. The reasons for high demand are the following:
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• The basis set is independent of atom position and species.

• Forces acting on atoms are equal to Hellman-Feynman forces, no basis set correction

to the forces is needed.

• It takes advantages for efficient algorithms, like the Fast Fourier Transformation

(FFT).

One major problem, though is that: a large number of plane waves is required to

describe the wave functions close to nucleus, defined as core region. This is due to two

reasons: first, the electrons in this region are tightly bound to the nucleus and second, the

wave functions in this region are rapidly oscillating due to the orthogonality requirements

with the valence electron wave functions. One way to circumvent this problem is to

replace the strong Coulomb potential of the nucleus and the effects of the tightly bound

core electrons by an effective ionic potential acting on the valence electrons, known as

pseudopotential.

The general procedure for obtaining a pseudopotential begins by solving the all elec-

tron (AE) radial Schrödinger equation for a chosen atomic configuration, i.e. for a given

distribution of electrons in the atomic energy levels. This is called the reference configu-

ration: [
1

2

d2

dr2
+
l(l + 1)

2r2
+ Veff [ρ]

]
rφnlAE(r) = εnlrφ

nl
AE(r) (2.41)

One can generate a pseudo wavefunction φnlps corresponding to φnlAE, so that it becomes

node-less inside the core region of radius rc and matches exactly with the AE wavefunction

φnlAE for r ≥ rc. After constructing the pseudo wavefunction the pseudopotential can be

generated by inverting the Schrödinger equation,

V l
ps(r) = εl −

l(l + 1)

2r2
+

1

2rφlps

d2

dr2
[rφlps] (2.42)

The pseudopotential is finally obtained by subtracting the Hartree and exchange-

correlation potential calculated only for the valence electrons:

V (ion)l
ps = V l

ps − VHartree[ρps]− Vxc[ρps] (2.43)

There are two principle criteria to judge the goodness of a pseudopotential: (i) Trans-

ferability: a pseudopotential is transferable if it works reasonably well in different en-

vironments. (ii) Softness: a pseudopotential is soft if it requires less number of plane

waves.

To make these two criteria to be fulfilled several methods have been developed. There

are two kinds of pseudopotential that are widely used: norm conserving pseudopotential

and ultrasoft pseudopotential.
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♣ Norm conserving pseudopotential: Norm conserving pseudopotentials (NCPP) [26]

are constructed with an extra constraint that the pseudo-wave function must ensure

that the charge within the core radius is same for the pseudo and all-electron wave

function, i.e.,

∫
|φnlAE(r)|2dr =

∫
|φnlps(r)|2dr (2.44)

NCPP works well for most elements except for some first period 2p and 3d elements.

In these case the pseudo and the all-electron wave functions are almost identical.

♣ Ultra soft pseudopotential: With the requirement of norm conservation, it is not

possible to make a pseudopotential dramatically soft. A completely new idea of

removing norm conserving requirement was introduced by Vanderbilt [27] with a

motivation to introduce soft pseudopotential. Vanderbilt’s ultrasoft pseudopoten-

tial can reduce significantly the number of plane waves to express the pseudo wave

functions, at the expense of a much more complex formulation of the algorithm.

Relaxation of the norm-conservation condition make possible to form each smooth

pseudowavefunction independently, within the constraint of matching the wave func-

tions at the radius rc. Therefore one can choose much larger rc value than for a

norm-conserving pseudopotential, where the desired accuracy is taken care of by ad-

ditional auxiliary functions and overlap operators. The Vanderbilt’s pseudopoten-

tials are implemented in a number of DFT computer codes such as VASP [28]-[29],

PWscf [30].

(b) Methods using partial basis sets and muffin-Tin approximation

The crucial approximation that these methods are based on is the Muffin-tin (MT) sphere

approximation. In this approximation the potential around each atom is treated as spher-

ically symmetric within a radius SR and the same is considered to be constant in between

muffin-tin (MT) spheres, called interstitial region (as illustrated in Fig. 2.2). A single MT

potential can be written as:

vext(rR) =

{
v(rR) for rR ≤ SR, rR = |r−R|
−v0 for rR > SR

(2.45)

The basis set therefore consists of two parts: the rapidly varying part of the wave-

functions in the MT region (where the potential is spherically symmetric) is represented

by a radial solution of the Schrödinger equation at energy ε (φRl(ε)) times spherical har-

monics, known as partial waves, whereas the smoothly varying part of the wavefunctions

in the interstitial region (where the potential is constant) is represented by plane wave

or other smoothly varying functions. To generate a well behaved basis through out the
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Exact Ion Cores

MT

Fig. 2.2: The construction of Muffin-Tin potential

space one needs to impose suitable boundary conditions at the sphere boundary. De-

pending on the choice of representing function in the interstitial region and the boundary

conditions several energy dependent first principles DFT based methods have been de-

veloped so far, for example cellular method [31], augmented plane wave (APW) method

[32], Korringa-Kohn-Rostocker (KKR) Green’s function method [33] etc.

The energy dependence of the partial waves result into a secular equation of the form,

M(εi).C
i = 0 (2.46)

Though this kind of approach is quite accurate in band structure calculations, but the

energy dependence of the secular equations demands high computer requirements. In the

first half of the 1970s Andersen [34] came up with the smart idea of linearization of the

energy dependent partial waves, which reduce drastically the requirements of computer

resources. The idea of the linear method is to use a set of reference energies (εν). The

solution of the radial Schrödinger equation (at these particular energies) and its first

energy derivative is taken into account in constructing the basis set. The radial basis

functions φRl(ε) take the form,

φRl(ε) = φRl(εν) + (ε− εν)φ̇Rl(εν) (2.47)

This eliminates all energy dependence from the Hamiltonian and results in set of

eigenvalue problems as in case of fixed basis set.

F Linearized Muffin-Tin Orbital method

In the method of construction of Muffin-Tin orbitals (MTO) the plane wave solutions

in the constant potential interstitial region are expanded in terms of Spherical Neumann

ηl(κ, rR) and Bessel jl(κ, rR) functions, where κ2 = ε − v0. They join continuously and

smoothly at the MT sphere boundary with the partial waves to form MTO. A simple

version of the MTO results if the constant κ is chosen to be κ = 0, which was materialized

by Atomic Sphere Approximation (ASA) [34]. Within this approximation the muffin-tin
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spheres are replaced by space-filling atomic spheres, called Wigner-Seitz (WS) spheres.

In this limit of κ → 0, ηl → (rR/SR)−l−1 with logarithmic derivative D = −l − 1 and

jl → (rR/SR)l with D = l. With the above mentioned approximation a single MTO can

be expressed as,

χαRL(rR, ε) = φRL(rR, ε)N
α
Rl(ε) +

∑
R′L′

jαl′ (rR′)[Pα
R′L′(ε)δR′L′,RL − SαR′L′,RL] (2.48)

Nα
Rl is the normalization factor, Pα

Rl is the potential function and the superscript

α represents the screening constant which control the range of MTO. The relationship

between the potential function Pα
Rl, α matrix and the logarithmic derivative DRl, is

[Pα
Rl]
−1 =

[
2(2l + 1)

Dl + l + 1

Dl − 1

]−1

− α (2.49)

The last term of Eqn. 2.48 expresses the tail of the MTO centered on the sphere of

radius SR′ . This term depends only on the structure and positions of the atoms through

the structure matrix Sα and not on the type of atoms occupying the sites. In terms of

canonical structure constant S0, Sα is given by,

Sα = S0(1− αS0)−1 (2.50)

The energy dependence of the MTO basis leads to general ASA-KKR secular equa-

tions:

det|Pα
R′L′(ε)δR′L′,RL − SαR′L′,RL| = 0 (2.51)

Finally following Andersen’s approach of linearization the LMTO basis functions can

be written as,

χαRL = φRL(rR) +
∑

φ̇αR′L′(rR′)hαR′L′,RL (2.52)

where, the functions φ̇αR′L′(rR′) are linear combination of φ and φ̇ having the form,

φ̇αR′L′ = φ̇R′L′ + φR′L′oα (2.53)

oα is the non-diagonal overlap matrix. The matrix hα is given by

hα = Cα − εν + (∆α)1/2Sα(∆α)1/2 (2.54)

where Cα and ∆α are the diagonal potential matrices. They depend on the potential

inside the sphere, the chosen screening parameter α and on the sphere radii. The band

center parameter Cα is given by,

Cα = εν −
Pα(εν)

Ṗα(εν)
(2.55)
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and the band width is given by √
(∆α) =

1

Ṗα(εν)
(2.56)

Each set of screened LMTO’s is characterized by the set of screening constant αRl and

these can be determined so as to give the LMTO set short range. The site independent

set of screening constants

α =


0.3485 l = 0 (s)

0.05303 l = 1 (p)

0.010714 l = 2 (d)

 (2.57)

for spd screening have been found numerically [35] to give short ranged envelope functions

for all, reasonably homogeneous, three-dimensional structures. The corresponding LMTO

sets are referred to as tight-binding(TB) sets. The two-centre nearly orthogonal TB-

Hamiltonian is:

H
(1)
RL,R′L′ = ενRlδRR′δLL′ + hαRL,R′L′ (2.58)

For the purpose of self-consistency, particularly for open structures, it is necessary to

go beyond ASA to attain desired accuracy. It is done by introducing a correction term,

named combined correction. The corrected Hamiltonian is:

H(2) = εν + hα − (κ2
ν + v0)∂κ2hα

= Cα + (∆α)1/2Sα(∆α)1/2 − (κ2
ν + v0)∂κ2hα (2.59)

(2.60)

F Linearized Augmented Plane Wave method

The linearized version of Augmented Plane Wave (LAPW) basis, following Andersen’s

linearization approach, is expressed as:

χq(r, ε) =

{ ∑
l,m

(
Aqlm,RφLR(rR, εν) +Bq

lm,Rφ̇LR(rR, εν)
)

for rR ≤ SR

ei(q.r) for rR > SR
(2.61)

where the coefficients Aqlm,R and Bq
lm,R can be determined by matching these solutions

in magnitude and slope at the sphere boundary. To do so the plane wave solution in the

interstitial is required to expand in terms of Bessel functions jl(rR, q). In principle a large

number of l values are required for exact matching, but to keep the problem tractable one

truncates this number at some value lmax. Therefore in band structure calculations based

on LAPW basis set a crucial parameter is lmax for which a reasonable choice is needed.

The condition that allows a good choice of lmax is :
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RiKmax = lmax (2.62)

where Ri is the radius of ith MT sphere and Kmax determines the cut-off for the plane

waves. The accuracy of the basis is controlled by the quantity Rmin
i Kmax, where Rmin

i is

the smallest MT sphere radius in the unit cell.

In this method the core states, those do not participate in chemical bonding, are

treated as in free atoms, but subject to the potential due to the valence states. The

problem arises in order to treat the semi-core states, which lie in between core and valence

states . For example, due to hybridization, Fe atom in bcc lattice will have a non-negligible

amount of 4p-character in its valence states that are about 0.2 Ry below the Fermi level.

But the 3p-states that are 4.3 Ry below the Fermi level are not entirely confined in the

core too. It is not clear how εFel=1 should be chosen: close to 3p, close to 4p or at an

intermediate value? In order to solve this problem an additional basis functions can be

added. They are called ”local orbitals” [36] and consist of a linear combination of two

radial functions at two different energies and one energy derivative at one of these energies:

φLOlm =
(
Alm,RφLR(rR, εν1) +Blm,Rφ̇LR(rR, εν1) + Clm,RφLR(rR, εν2)

)
(2.63)

The coefficients are determined by the requirements that φLO should be normalized

and should have zero value and slope at the sphere boundary. Though adding local

orbitals increases the LAPW basis set size, still their number is quite small compared to

typical LAPW basis set size of a few hundred functions.

The problem with the APW method was the energy dependence of the basis set, which

is removed in the LAPW+LO method, but at the cost of a somewhat larger basis set size.

Sjöstedt, Nordstrom and Singh [37] proposed the so called APW+lo method, in which the

basis set is energy independent though still have the same size as in the APW method. In

this sense, APW+lo combines the good features of APW and LAPW+LO method. The

APW+lo basis set contains two kind of functions. The first kind is the standard APW

basis with the partial wave evaluated at a fixed energy εν . The other part of this basis is

local orbitals, which is defined differently from that used in connection with the LAPW

method. We abbreviate this local orbital as ‘lo’ instead of ‘LO’ used in connection with

LAPW. The local orbitals are defined as:

φlolm =
(
Alolm,RφLR(rR, εν1) +Blo

lm,Rφ̇LR(rR, εν1)
)

(2.64)

The two coefficients are determined by normalization and by requiring that the local

orbital has zero value at the MT boundary and not zero slope. Hence, both the APW and

the local orbital are continuous at the sphere boundary, but the first derivatives of both

functions are discontinuous at sphere boundary. This new scheme converges practically to
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identical results as the LAPW method [39], but allows to reduce “Rmin
i Kmax” drastically,

thus the corresponding computational time too.

The LAPW based computer code that has been used in the present study is Wien2k

[38].

(c) PAW method

The Projector Augmented Wave (PAW) method is a general approach for the all electron

solution, proposed by Blöchl [40]. The unique features of this method is combination of

the formal simplicity of plane wave pseudopotential approach and the versatility of the

LAPW method.

A transformation τ is used to map the true wave function ψ onto smooth auxiliary

wave function ψ̃. An augmentation region ΩR is defined. Outside this region, the true

wave functions coincides with auxiliary wave functions, while inside this region, the true

wave function is given by ψ = τ ψ̃. The transformation τ is defined as identity plus a

localized atom-centered contribution τ̂R,

τ = 1 + τ̂R (2.65)

Within each augmentation region, each valence wavefunction ψ can be expanded as

the sum of atomic partial waves φm(r) such as

ψ(r) =
∑
m

cmφm(r) (2.66)

where the atomic partial waves only include the valence states that are orthogonalized

to the core wave functions of the atom. For each partial wave there is a auxiliary partial

wave φ̃m given by,

φm = τ φ̃m (2.67)

All the auxiliary partial waves should be identical with φm beyond certain radius since

the transformation only acts locally in the core region. Demanding the transformation

to operate on an arbitrary auxiliary wavefunction, one is able to expand the auxiliary

wavefunction into the auxiliary partial waves with the same coefficient cm, as,

ψ̃ =
∑
m

cmφ̃m (2.68)

Starting from Eqn. 2.66, the all electron wavefunction can be expressed as,

ψ = ψ̃ +
∑
m

cm(φm − φ̃m) (2.69)

The projection operator P̃m is then defined by,
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cm = 〈P̃m|ψ̃〉 (2.70)

The projection operator probes the local character of the auxiliary wave function in

the atomic region. From the above equation, one can derive,

∑
m

|ψ̃〉〈P̃m| = 1 (2.71)

which is valid within the augmentation region. In order to determine the projector

operator fully one needs to add another condition for the projector operator,

〈P̃m|φ̃m′〉 = δmm′ (2.72)

In terms of projector operators the transformation is expressed as,

τ = 1 +
∑
m

(|φm〉+ |φ̃m〉)〈p̃m| (2.73)

The true wave function can be expressed as,

ψ = ψ̃ +
∑
m

(φm − φ̃m)〈p̃m|ψ̃〉 (2.74)

By using transformation τ , any operator A in the original AE space can also be cast

into Ã by,

Ã = τ ∗Aτ (2.75)

The KS equation is similarly transformed into,

(H̃ − εS̃)|ψ̃i〉 = 0 (2.76)

where H̃ = τ ∗Hτ is the pseudopotential Hamiltonian and S = τ ∗τ is the pseudopo-

tential overlap operator.

We used PAW method as implemented in VASP [28]-[29].

2.3 Nth Order Muffin Tin Orbital (NMTO) - a down-

folding method

To calculate the single electron part - the orbitals, hopping integrals and on-site terms,

of a correlated Hamiltonian, one needs to extract low energy, few band Hamiltonian

from the all band Hamiltonian. This is achieved through downfolding technique. The

downfolding technique is based on the division of the space of a basis set into two subsets,

lower |l〉 and higher |s〉, and reduction of the full Hamiltonian H into the lower subset

of the Hamiltonian H̃ll in such a way that lowest l eigenvalues of H and eigenvalues of
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H̃ll are same. The formation of H̃ll introduces additional energy dependence through the

expression:

H̃ll(ε) = Hll −Hlh(Hhh − ε)−1Hhl (2.77)

In LMTO method it is implemented in the KKR equation, via the transformation of

the structure matrix Sα into β representation,

Sβll = Sαli + Sαli(P
α
ii − Sαii)−1Sαil (2.78)

The additional energy dependence is taken care of by the linearization procedure in

construction of LMTO. Though the implementation of downfolding in LMTO helps to

resolve the problem of ghost bands, but it does not provide an accurate way to do a

massive downfolding, where the downfolded bands span in a very narrow energy window.

The shortcomings of LMTO method in general can be listed as follows:

• The basis is complete to (ε − εν) ( i.e. 1st order) inside the sphere while it is only

complete to to (ε − εν)0 = 1 ( 0th order ) in the interstitial, which is inconsistent.

This is made consistent by removing the interstitial region, through introduction of

ASA.

• For open systems non-ASA corrections (Combined correction) is also included in

the Hamiltonian and in the Overlap matrices. but,

1. This makes the formalism heavy.

2. Basis must often be increased by multi-panel calculation.

• The expansion of the Hamiltonian H in the orthogonal representation as a power

series in the two-centered tight-binding Hamiltonian h :

〈χ|(H − εν)|χ〉 = h− hoh+ ....... (2.79)

is obtained only within ASA and excluding downfolding.

Recently a more sophisticated method, based on N th order muffin tin orbital (NMTO)

basis [41], has been formulated, which overcomes these shortcomings and provides a way

to describe the downfolded band structure with high accuracy within a chosen energy

window. It uses the partial waves, φRL(ε, rR) in the atomic sphere, but instead of Neumann

function it uses Screened spherical waves (SSWs) as its tail part. The screening technique

that has been adopted is described as follows:

• It introduces a hard sphere of radius a and a phase shifted partial wave solution

φα0
Rl(ε, rR) (shown by the green line in Fig. 2.3), which matches the value and slope
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Fig. 2.3: Constituents of Kink partial wave (KPW), φ, φ0 and ϕ.

of φ at SR, but their curvatures differ. At the hard sphere, φα0
Rl(ε, rR) is joined

continuously but with a kink to the SSW, ϕαRL(ε, r), shown by the blue line in

Fig. 2.3.

The combined form of these contributions known as the Kink Partial Wave (KPW),

is given as,

ψαRL(ε, rR) = [φαRL(ε, rR)− φα0
RL(ε, rR)]YL(r̂R) + ϕαRL(ε, r) (2.80)

The members of the NMTO basis set χ
(N)
R′L′ is constructed by Lagrange interpolation

of ψαRL(ε, rR) evaluated at the energy points ε0, ......, εN (as shown in Fig. 2.4),

χ
(N)
R′L′ =

N∑
n=0

∑
RL∈A

ψαRL(εn, rR)L
(N)
nRL,R′L′ (2.81)

ψ

ε ε
ε

ε0 1

2

Fig. 2.4: The Nth order approximation to the energy dependence of a partial wave for a discrete (La-
grange) mesh.

The constructed basis set is therefore energy selective and localized in nature. The

energy selective nature of the basis set provides the way to select a narrow energy window

from full LDA band structure accurately and the accuracy can even be tuned with the
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choice of the number of energy points (N). NMTO-downfolding technique also provides

the underlying Wannier or Wannier-like basis, which are nothing but the effective or-

bitals defining the low energy Hamiltonian. If the selected bands are isolated from other

bands, the orthonomalized NMTOs are the Wannier functions. However, for the strongly

hybridized bands the NMTOs define a Wannier-like basis.

2.4 Many body techniques

The inclusion of the missing correlated part along with the LDA low energy Hamiltonian

defines the many body model Hamiltonians, such as Generalized Hubbard model, Heisen-

berg model, t-J model etc. To solve these models three many body techniques have been

used in this thesis, as discussed below.

2.4.1 Stochastic series expansion of quantum Monte Carlo method

The central quantity to be sampled in a Quantum Monte Carlo (QMC) simulation is the

partition function Z:

Z = Tr[exp(−βH)] (2.82)

where β is the inverse temperature (β = 1/T ) and H is the underlying Hamiltonian.

In Stochastic series expansion (SSE) [42, 43, 44] one expands Z into a power series by

choosing a basis |α〉,

Z =
∑
α

∞∑
n=o

(−β)n

n!
〈α|Hn|α〉 (2.83)

For an isotropic S = 1/2 Heisenberg model,

H = J
∑
〈i,j〉

SiSj (2.84)

The standard basis set is defined as,

|α〉 = |Sz1 , Sz2 ,−−−−−−−−, SzN〉, Szi = ±1/2 (2.85)

where N is the number of spins in the system and J denotes the exchange parameter

between two adjacent spins.

For the construction of the SSE configuration space the Hamiltonian can be written

as,

H = −J
M∑
b=1

[H1,b −H2,b] (2.86)
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where H1,b and H2,b are the diagonal and off-diagonal bond operators respectively,

corresponding to an interacting spin pair 〈i(b), j(b)〉,

H1,b =
1

4
− Szi(b)Szj(b) (2.87)

and

H2,b =
1

2
(S+

i(b)S
−
j(b) + S−i(b)S

+
j(b)) (2.88)

In terms of bond operators the SSE partition function is,

Z =
∑
α

∑
SL

βn(L− n)!

L!
〈α|

L∏
i=1

Hai,bi |α〉 (2.89)

where SL denotes a sequence of operator indices; SL = [a1, b1], [a2, b2].......[aL, bL], with

ai ∈ {1, 2} and bi ∈ {1, ....M} or [ai, bi] = [0, 0], and n is the number of [0, 0] elements in

SL.

As the bond operators do no commute with each other, a Quantum Monte Carlo

(QMC) procedure is required to use to sample the terms {α, SL}. We use the ”operator

loop update” scheme, as proposed by Sandvik [42, 43, 44], which consists of two steps:

1. local substitution of single diagonal operator, [0, 0]p ←→ [1, b]p.

2. change the operator type, diagonal to off-diagonal, for any number of diagonal and

off-diagonal operators, [1, b]p1 , [1, b]p2 ..........[1, b]pm ←→ [2, b]p1 , [2, b]p2 ..........[2, b]pm .

For details on the ”operator loop update” technique see Ref.[42], [43], [44].

2.4.2 Dynamical Mean Field Theory (DMFT)

DMFT [45] maps the many-body crystal problem defined by the Hubbard Hamiltonian

onto an effective self-consistent quantum impurity problem, which deals with a set of local

quantum mechanical degrees of freedom that interacts with a bath created by all other

degrees of freedom on other sites, see Fig. 2.5. This approximation is exact in the limit

of infinite dimensions.

The corresponding local Green’s function matrix is calculated via the k -integrated

Dyson equation,

G(ωn) =
∑
k

[(ωn + µ)I −HLDA(k)− Σ(ωn)]−1 (2.90)

In the above HLDA(k), is the few band description of the LDA band structure defined in

an Wannier function basis. The chemical potential µ is defined self-consistently through

the total number of electrons. ωn=(2n+1)π/β are the Matsubara frequencies with β as

the inverse temperature (β =1/T). Σ is the selfenergy matrix and related to the local

Green’s function (G) and bath Green’s function (G) through the expression:
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Fig. 2.5: The DFMT replaces a the full lattice of a correlated electron system with a single impurity site
coupled to a self consistent bath (Taken from Ref.[45]).

Σ = G−1 −G−1 (2.91)

The local Green’s function therefore has to be calculated self-consistently with the

condition that implies the local Green’s function to be the same as the corresponding

solution of the quantum impurity problem:

G(τ − τ ′) = 1/Z

∫
D[c, c]eSeffc(τ)c(τ ′) (2.92)

where the effective action Seff is defined in terms of the bath Green’s function G, which

describes the energy, orbital, spin, and temperature-dependent interaction of a particular

site with the rest of the medium. The partition function Z is defined as,

Z =

∫
D[c, c]eSeff (2.93)

The DMFT self consistent flow chart is shown in Fig. 2.6. The first step is to guess

value of the input Σ and then calculate G from Eqn. 2.90 and 2.91. The next step is

the most difficult part of the self consistent cycle, i.e. to get the solution of the quantum

impurity problem. Several impurity problem solver techniques have been proposed, like

Iterated Perturbation Theory (IPT), Numerical Renormalization Group (NRG), Exact

diagonalization (ED), Quantum Monte Carlo (QMC) etc. Once the impurity problem is

solved, we get G, which together with G yields a new Σ from Eqn. 2.91. In the present

study we use QMC, as the quantum impurity solver, which is numerically an exact method,

but requires an extrapolation, to calculate quantities involving real frequencies.
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Fig. 2.6: Flowchart of the DMFT self consistent cycle.

2.4.3 Exact diagonalization method

This is a technique to provide a numerically exact solution, with a few caveats. In this

technique, instead of considering the entire lattice, one considers a finite-sized cluster,

which can be solved exactly on a computer. One first enumerates the degrees of freedom

available, for which one can consider the states that contribute more in the essential

physics of the system, i.e. the low lying single-particle states only. Then next crucial step

is to choose a suitable basis to write the Hamiltonian, for which a preferable choice is the

localized Wannier functions. If the interactions are strictly of four-fermion type, then the

basis has to be in Fock space, and can only be written in terms of Slater Determinants or
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a linear combination of them. The rank of the corresponding Hamiltonian grows as,

d =
n!

m!(m− n)!
(2.94)

where n is the total number of states and m is the total number of particles. Obviously,

the time involved in diagonalizing such a Hamiltonian increases very quickly with n, and

only very small clusters can be diagonalized. However, if it is possible to separate the

interaction term into quadratic parts in different sectors of the Hilbert space, using some

symmetry, then the computational effort is reduced substantially. The model that has

been solved using this many body technique in this thesis, i.e. the two-sublattice Kondo

model is defined as,

H = εB
∑
i∈B

b†iσαbiσα + εB′

∑
i∈B′

b′†iσαb
′
iσα

−tBB′

∑
<ij>σ,α

b†iσ,αb
′
jσ,α − tB′B′

∑
<ij>σ,α

b′†iσ,αb
′
jσ,α

−tBB
∑

<ij>σ,α

b†iσ,αbjσ,α + J
∑
i∈A

Si · b†iα~σαβbiβ (2.95)

The b† and b’s refer to the creation and annihilation operators, respectively, that

operate on the sites belong to sublattice one. The same operators for the sites belong

to the second sublattice are represented as b′† and b′. We have considered the hopping

integrals upto second nearest neighbor, i.e. tbb′ , tb′b′ and tbb. Therefore the Hamiltonian

matrix is already sparse. Nevertheless, it will be strictly tridigonal only for 1 dimension

and nearest neighbor hopping. In higher dimensions, the matrix is band diagonal and

may be further reduced to tridigonal form by Householder transformations. Then it can

be diagonalized easily by QR algorithm [47, 48, 49].

2.5 Outline of the present study

The various theoretical approaches that have been employed in various chapters are as

follows:

• In Chapter-3 a model is proposed to explain the underlying magnetic structure of

CuTe2O5 through NMTO calculation and is solved using SSE technique of quantum

Monte Carlo method. The observables that have been calculated are magnetic

susceptibility, magnetization and magnetic specific heat.

• In Chapter-4 we carried out a combined approach of LDA+DMFT calculations to

investigate the electronic structure of La2CuO4 in T and T′ phase.
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• In Chapter-5, to explain the kinetic energy driven antiferromagnetism in Sr2FeMoO6

we use a first principles derived two-sublattice double exchange model and solve it

with Exact diagonalization technique.

• In Chapter-6, we explored the origin of the ferromagnetic Tc trend in Cr-based

double perovskite series, Sr2CrB′O6 (B0=W/Re/Os), based on DFT calculations.

To support our investigation we also adopted model Hamiltonian approach, which

turned out to be a contribution of two-sublattice double exchange model and the

super exchange model. The established model has been solved with Exact diago-

nalization technique. Additionally we explore the possibility of large magneto-optic

signals in these materials, fully based on DFT calculations.

• The study on insulating ferromagnetic double perovskite La2NiMnO6 described in

Chapter-7, is entirely DFT based. The magnetic exchanges have been calculated

using the extended Kugel-Khomskii model of super exchange using NMTO derived

hopping integrals and site energies. For Γ point phonon and dielectric response

calculations we use Density functional perturbation theory (DFPT).
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Chapter 3

Proposed low-energy model Hamiltonian for

the spin-gapped system CuTe2O5

Content of this chapter has been published in: Hena Das, T. Saha-

Dasgupta, C. Gross and R. Valenti, Phys. Rev. B, 77, 224437 (2008)

(Editor’s suggestion).

3.1 Introduction

Transition metal oxides based on 3d9 copper Cu2+ ions reveal a striking diversity of

magnetic structures depending on the effective magnetic dimensionality of the system

[1]. Therefore a crucial piece of information needed in the process of understanding these

systems is the connection between the underlying chemical complexity of the compound

and the spin lattice. Often, this relation is not obvious from structural considerations and

one needs to rely on ab-initio based calculations that has proven to be very successful in

deriving the underlying spin model of a large number of low-dimensional quantum spin

systems including cuprates [2, 3, 4], vanadates [5, 6] and titanates [8, 9].

Introduction of lone pair cations, like As3+, Se4+, Te4+, Pb2+ or Bi3+, in between Cu2+-

O2−-Cu2+ superexchange path, was suggested as a fruitful path to reduce the magnetic

dimensionality and to create new magnetic structures [10, 11]. For example Cu2Te2O5X2

(X=Cl, Br), where the effective magnetic dimension is reduced to extreme limit of quasi-

zero dimension by the magnetic insulation via Te4+ ions[12]. There are many more

examples of such systems, like Cu4Te5O12Cl4[13, 14], Cu3(SeO3)2Cl2[15], Cu3TeO6 etc.

Recently, in an attempt to analyze the effect of lone-pair cations such as Se4+ or Te4+ on

the magnetic dimensionality of Cu2+-based systems, the magnetic properties of CuTe2O5

were investigated [1]. CuTe2O5 is structurally a Cu(II)-dimer system separated by Te ions.

Magnetic susceptibility measurements show a maximum at Tmax = 56.5 K with an expo-

nential drop at lower temperatures signaling the opening of a spin gap (see Fig. 3.1(a)).

The behavior at high temperatures follows the Curie law with a Curie-Weiss temperature

of θ = -41 K [1], which indicates that the dominant interactions in this system are anti-

ferromagnetic. Electron spin-resonance (ESR) studies suggest that the structural dimers

of CuTe2O5 do not coincide with the magnetic dimers [16]. To determine the underlying

magnetic structure Deisenhofer et.al. [16] fitted their susceptibility data considering three

model spin systems:
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T(K) T(K)

(a) (b)

Fig. 3.1: (a)Temperature dependences of the ESR intensity and the dc susceptibility. (b)Temperature
dependences of the spin susceptibility (circles) in CuTe2O5. The lines are best fits obtained by the
models : (1)A pure dimer model (black dashed line), (2)An alternating spin chain model (blue solid line),
(3)Interacting dimer model (red solid line). Taken from Ref.[16].

• A pure dimer model, in which only two sites are magnetically coupled and are mag-

netically isolated from rest of the sites. A schematic diagram of a antiferromagnetic

dimer system is shown in Fig. 3.2.

J J J J

JJJJ

Fig. 3.2: An antiferromagnetic dimer system with intra dimer interaction strength J .

The dimer susceptibility as driven by Bleaney and Bowers (BB)[17] is given by,

χ(T ) =
Ng2µ2

B

kBT
[3 + exp(J/kBT )]−1 (3.1)

where J denotes the intradimer exchange coupling, g is the effective g factor, and

kB is the Bohr magneton.

• An alternating spin chain model, an infinite one dimensional system with alternate

exchange interaction between two magnetic ions of different magnitude and may

be of different sign. A schematic representation of an alternating antiferromagnetic

chain is shown in Fig. 3.3.

Numerical method [18] was used to solve the spin-1/2 alternating Heisenberg anti-

ferromagnetic model.
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Fig. 3.3: An alternating antferromagnetic spin chain with alternating exchange constants J1 and J2.

• Interacting dimer model, in which the exchange interaction between two adjacent

dimers (J ′) is non-negligible. The magnetic susceptibility is defined by a mean-field

modification of the Bleaney-Bowers equation [19],

χ(T ) =
Ng2µ2

B

kBT
[3 + exp(J/kBT ) + J ′/kBT ]−1 (3.2)

As fitting the susceptibility data to all of these three models showed good agreement

with the experimental data [16] (see Fig. 3.1(b)), the determination of the magnetic struc-

ture from the fitting was not unambiguous. Further detailed investigation of the magnetic

exchange paths using the extended Hückel tight-binding (EHTB) [20, 21] method was also

carried out. This study suggested that:

1. the strongest interaction is between Cu ions which are sixth nearest neighbors (J6)

and is of antiferromagnetic supersuperexchange type mediated by a O-Te-O bridge.

2. the next strongest interaction is of antiferromagnetic superexchange (SE) type

within the structural dimer (J1), yielding a ratio J1 /J6 = 0.59 [16].

Based on these findings, Deisenhofer et.al. [16] proposed an alternating spin-chain

model as the simplest possible model for CuTe2O5.

Given the existence of many possible Cu-Cu interaction paths in this material whose

relative importance may not be necessarily captured in EHTB study, we performed ab-

initio density-functional theory (DFT) calculations and applied the Nth order muffin-tin

orbital (NMTO)-downfolding technique in order to derived the low-energy spin model for

CuTe2O5, the validity of which had been checked by computing the magnetic susceptibility

with quantum Monte Carlo technique and comparing it with available experimental data..

This chapter is outlined as follows: in §: 3.2 we discuss the crystal structure of CuTe2O5.

§: 3.6 present ab initio DFT electronic structure of CuTe2O5. In §: 3.4 we discuss the

effective model Hamiltonian obtained with the NMTO downfolding method. QMC results

for magnetic susceptibility, magnetization and specific heat are described in §: 3.5 and

finally in §: 8 we present our conclusions with future outlook.
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b

c

Te1

Te2

(d)

Fig. 3.4: Building units of CuTe2O5. (a) CuO6-distorted octahedron. (b) Cu2O10-structural dimer unit.
(c) TeO4-tetrahedra. (d) Crystal structure of CuTe2O5. The largest balls represent Te1 and Te2. Te1
and Te2 are shown in gray and black colors, respectively. Cu atoms are represented by medium sized
balls, situated at the center of the distorted octahedra. The smallest balls denote the oxygen atoms.

3.2 Crystal structure

CuTe2O5 crystallizes in the monoclinic space group P21/c (Ref. [22]) with lattice param-

eters a = 6.871 Å, b = 9.322 Å, c = 7.602 Å, and β = 109.08◦. It is built out of CuO6

distorted octahedra (Fig. 3.4(a)), with six inequivalent oxygens O1, O2, O3, O4, O5, and

O5′ surrounding each Cu(II) ion. Each CuO6 octahedron is elongated along the O2-O5′

axis, with distances dCu−O5′ = 2.303 Å and dCu−O2 = 2.779 Å. The Cu-O distances in the

CuO4 plane range from dCu−O5 = 1.948 Å to dCu−O3 = 1.969 Å. Two neighboring CuO6

octahedra share an edge to form a Cu2O10 structural dimer (Fig. 3.4(b)). The oxygen

octahedra of two Cu(II) ions within a given structural dimer are rotated by 180◦ with

respect to each other.

The structural dimers form a chain like structure running almost parallel to the crys-

tallographic c axis. These chains pile along the crystallographic b axis (Fig. 3.4(d)).
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The Te1 atoms are situated between two successive Cu(II)-structural dimer chains, while

the Te2 atoms are located in between two Cu2O10 structural dimers along a given chain.

The local oxygen environment of the Te atoms forms a TeO4 tetrahedra (Fig. 3.4(c)).

The layers containing these chains in the bc plane are stacked approximately along the

crystallographic a axis with hardly any connection between the layers.

3.3 Electronic structure

Fig. 3.5: Partial density of states of Cu d (in black full lines), O p (in red dashed lines), and Te p (in
cyan or gray full lines) orbitals for CuTe2O5. The inset shows the density of states for O p and Te p in
the energy range close to EF , dominated by Cu dx2−y2 character.

In order to analyze the electronic behavior of CuTe2O5 we carried out first princi-

ples Density functional theory based calculations within the local density approximation

(LDA) by employing both the WIEN2K code based on the full-potential linearized aug-

mented plane-wave (LAPW) method and the Stuttgart TBLMTO-47 code based on the

linear muffin-tin orbital (LMTO) method. The calculated band structures agree well with

each other within the allowed error bars of the various approximations involved in these

two methods. Fig. 3.5 and 3.6 show the non-spinpolarized density of states (DOS) and

band structures, respectively, of CuTe2O5. The orbital contributions to the valence and

conduction bands in the band structure and the DOS were determined by defining the

local reference frame with the local z axis pointing along Cu-O2 bond and the local y

axis pointing almost parallel to the Cu-O5 bond.

The predominant feature of the band structure is the isolated manifold of four bands
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Electronic structure

Fig. 3.6: LDA band structure of CuTe2O5 plotted along various symmetry directions of the monoclinic
lattice. The zero of the energy has been set up at the LDA Fermi energy. The dominant orbital contri-
butions in various energy ranges are shown in boxes on the right-hand side. The various Cu d characters
are shown in the local reference frame as described in the text.

crossing the Fermi level (EF ), formed by Cu dx2−y2 orbitals corresponding to the four Cu

atoms in the unit cell, admixed with O p states. These bands are half filled and separated

from the low lying O p and non-dx2−y2 Cu valence bands by a gap of about 0.8 eV and

from the Te p-dominated high lying conduction bands by a gap of about 2.2 eV, with the

zero of energy set at the LDA Fermi level. We note that in the low-energy scale, the LDA

results lead to a metallic state. Introduction of missing correlation effects beyond LDA,

for instance, with the LDA+U functional, is expected to drive the system insulating, as

our LDA+U calculations corroborated.

The valence band shows Cu dxy, dyz, dzx and d3z2−r2 character dominated bands in the

energy range between -2.2 and -1.2 eV, while the O p-dominated bands are in the energy

range between -4 and -1.2 eV. The contribution of O2 character in the conduction bands

crossing the Fermi level is found to be small compared to other oxygens because of the

large Cu-O2 bond length. The Te1 p and Te2 p states show a non-negligible contribution

to the bands crossing the Fermi energy, as pictured in the inset of Fig. 3.5 and play an

important role in mediating the Cu-Cu exchange interaction as will be demonstrated in
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what follows.

3.4 Derivation of Low-energy model Hamiltonian
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Fig. 3.7: Bands obtained with downfolded Cu dx2−y2 basis (solid lines) compared to full LDA band
structure (dashed lines). E0, E1 and E2 mark the energy points used in NMTO calculation.

We derived the low-energy Hamiltonian using NMTO downfolding method, defined

in the basis of the effective Cu dx2−y2 orbitals by keeping only the dx2−y2 orbital for

each Cu atom in the unit cell and integrating out all the rest. We show the downfolded

bands in Fig. 3.7 in comparison to the full LDA band structure. With the choice of three

energy points E0, E1 and E2, downfolded bands are indistinguishable from the Cu dx2−y2

dominated bands of the full LDA calculation.

Fig. 3.8: Effective Cu dx2−y2 orbital with lobes of opposite signs colored as black and white. The dx2−y2

orbital is defined with the choice of local reference frame as described in the text.

57



Derivation of Low-energy model Hamiltonian

The corresponding Wannier function is plotted in Fig. 3.8. The central part has

the 3dx2−y2 symmetry with the choice of the local coordinate system as stated above,

while the tails are shaped according to O px/py. The Cu dx2−y2 orbital forms strong

pd antibonds with the O px/py tails. O px/py tails bend toward the Te2 atom, which

indicates the importance of hybridization effects from the Te cations and enhances the

Cu-Cu interaction placed at different structural dimers Cu2O10.

Table 3.1: Cu-Cu hopping parameters corresponding to the downfolded Cu-dx2−y2 Hamiltonian in
NMTO-Wannier function basis. Interactions of strength larger than 1 meV are listed.

hopping Cu-Cu distances Hopping parameters

in Å in meV

t1 3.18 38.7

t3 5.32 11.0

t4 5.58 112.9

t5 5.83 13.7

t6 6.20 59.9

t7 6.43 4.9

Table 3.1 shows the various dominant effective hopping integrals tij with magnitude

greater than 1 meV between the Cu(II) ions at sites i and j. The notation for the various

hoppings is shown in Fig. 3.9 where the subindex of tn corresponds to the nth Cu neighbors.

The strongest hopping integral, t4, is found to be between those two Cu(II) ions which

are placed at different structural dimers and the interaction is mediated by two O-Te-O

bridges. t1, which denotes the hopping integral between two Cu(II) ions situated within

the same structural dimer unit, is found to be about 1/3 of the strongest hopping integral

(t4). The second strongest hopping term, t6, mediated by one O-Te-O bridge is about 1/2

of t4. Fig. 3.9(b) shows the interaction paths in the ab plane, which are weak in general

and can be neglected. In particular, we mention as examples the hopping integrals t3 and

t7, which are approximately 1/10 and 1/25 of the strongest hopping term (t4), respectively.

In the following we discuss the origin of the various dominant interaction paths.

♣ Strongest hopping term t4

The strongest hopping term, t4, mediated by two O-Te-O bridges is associated to a Cu-

O-Te-O-Cu supersuper exchange path generating the spin-spin coupling J4. The strength

of a supersuper exchange interaction through an exchange path of type Cu-O-L-O-Cu

(e.g., L=Te) depends sensitively on how the O-L-O linkage orients the two magnetic

orbitals (i.e., the dx2−y2 orbitals) centered at two Cu sites and also on how the tails of

the magnetic orbitals, which have contributions from the orbitals of the ligand atom L,
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Fig. 3.9: Cu-Cu interaction paths tn. The color convention is the same as Fig. 3.4.

are oriented with respect to the central part. In Fig. 3.10 we show the Wannier function

plot corresponding to t4, where the effective Cu dx2−y2-like Wannier orbitals are at the Cu

sites between which we found the strongest interaction. The O px/py tails bend toward

the Te atoms forming O-Te-O ligand paths which are responsible for the strong Cu-Cu

bonding.

♣ Second strongest hopping term t6

The hopping integral t6 describes the next strong Cu-Cu interaction path, which is medi-

ated via one O-Te-O bridge and responsible for the Cu-O-Te-O-Cu supersuper exchange

interaction generating the spin-spin coupling J6. Fig. 3.11 shows the Wannier plots of the

Cu dx2−y2 downfolded NMTOs. Here the oxygen tails bend toward the interconnecting

TeO2 unit to provide an interaction pathway between the two Cu sites as in the t4 path.

However the strength of this interaction is expected to be weaker than t4 since there is

only one, instead of two O-Te-O interaction path.

♣ Structural intradimer hopping term t1

t1 corresponds to the intradimer Cu-Cu interaction path which is mediated by O5-O5′

atoms. In Fig. 3.12 we show the Wannier function plot, where the effective Cu dx2−y2
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Derivation of Low-energy model Hamiltonian

Fig. 3.10: Effective orbital corresponding to the downfolded NMTOs, placed at two Cu sites situated
at two different structural dimer units corresponding to the t4 interaction. Lobes of orbitals placed at
different Cu sites are colored differently. Lobe colored black (white) at one Cu site represents the same
sign as that colored magenta (cyan) at other Cu site.

Fig. 3.11: Effective orbital corresponding to the downfolded NMTOs, placed at two Cu sites situated at
two different structural dimer units corresponding to the t6 hopping term. Color convention is the same
as in Fig. 3.10
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-like Wannier orbitals are placed at the Cu sites of the same structural dimer unit. As

we stated above, each structural dimer unit is made of two edge sharing CuO6 distorted

octahedra. In the case of the first octahedron O5 is situated on the basal plane of the

octahedron and O5 px/py form pdσ antibond with the Cu dx2−y2 orbital, whereas O5′ is

situated at the apical position for this octahedron. The reverse is true for the second

octahedron. Therefore Cu dx2−y2 orbitals of two Cu2+ sites placed at the same structural

dimer unit are misaligned, which is responsible for the weak Cu-Cu intradimer interaction.

We note that the internal parameters associated with atomic positions of Cu, O5 and O5′

are such that the Cu-O5-Cu and Cu-O5′-Cu angles turn out to be close to 90◦ (96.76◦).

The Cu-Cu interaction within the structural dimer, which is weak in general, is therefore

in the borderline where a sign change in the exchange interaction from antiferromagnetic

to ferromagnetic may occur [23].

Fig. 3.12: Cu dx2−y2 downfolded NMTOs, placed at two Cu sites situated within the same structural
dimer. The O2 sites with long Cu-O2 bond lengths have been removed for better view. Color convention
is the same as in Fig. 3.10.

♣ Proposed low energy model Hamiltonian

The description of the spin model for CuTe2O5 as obtained from the NMTO-downfolding

technique turned out to be that of a system of coupled dimers in a two-dimensional

(2D) grid (see Fig. 3.13). We reduced the underlying spin model to that of a 2D model,

because the interlayer couplings were estimated to be 2 orders of magnitude smaller than

the intralayer couplings. Inclusion of the coupling corresponding to t5 has also been

found to have marginal effects. The corresponding spin-1/2 Heisenberg Hamiltonian on

a N1×N2 lattice is:
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Fig. 3.13: The 2D coupled dimer model shown on a 8×4 (32 site) lattice. Periodic boundary conditions
have been applied on both directions. The thick, thin and dashed lines represent the strongest J4, the
next strong J6 and the weak structural intradimer interaction J1, respectively. The site index k is given
by k=N1(l +m), where m runs over number of rows in the square lattice (m=0,1, . . . ,N1) and l runs
over the number of columns in the square lattice (l=0,1, . . . ,N2).

H = J1

N2−1∑
j=0

N1
2
−1∑

i=0

(S2i,jS2i+1,j) + J4

N2−1∑
j=0

N1
2
−1∑

i=0

(S2i+1,jS2i+2,j)

+ J6

N2
2
−1∑

j=0

N1
2
−1∑

i=0

[(S2i,2jS2i,2j+1 + S2i,2jS2i+2,2j+1)

+ (S2i+1,2jS2i+1,2j−1 + S2i+1,2jS2i+3,2j−1)] (3.3)

where J1, J4, and J6 are the exchange integrals corresponding to the hopping paths t1,

t4, and t6, respectively. Interestingly, this model reduces to the model grid that describes

the magnetic behavior of CaCuGe2O6 when J1 = 0. In that case, the two-dimensional

model has (using the present notation) two critical points at J6 ≈ −0.9J4 and J6 ≈ 0.55J4

[2].

62



Section 3.5

3.5 Susceptibility, magnetization and specific heat

In order to check the goodness of our proposed model, we calculated the magnetic sus-

ceptibility as well as magnetization and specific-heat properties by considering the above

mentioned spin-1/2 Heisenberg model. The analysis of model (Eq. 3.3) was done by the

quantum Monte Carlo method (stochastic series expansion) [24]-[26] on a 20×20 lattice.

While the NMTO-downfolding technique gives us an estimation for hopping parameters,

it does not provide directly values of exchange integrals. The exchange coupling, J , can

be expressed in general as a sum of antiferromagnetic and ferromagnetic contributions,

J = JAFM + JFM . In the limit of large correlation, typically valid for Cu based sys-

tem, the antiferromagnetic contribution, JAFM , is related to the hopping integral t by

the second-order perturbation relation JAFM = 4t2/U , where U is the effective on-site

Coulomb repulsion. In absence of a satisfactory approach for computing J directly, in the

following we considered the NMTO-downfolding inputs to built up the model and starting

point for relative estimates of various exchange interactions. We defined the parameters,

α1 =
J6

J4

, α2 =
J1

J4

(3.4)

which measure the ratio of the interdimer J6 and structural intradimer J1 interac-

tions with respect to the exchange interaction which was suggested from the downfolding

calculations to be the strongest J4.

Fig. 3.14: Temperature dependence of magnetic susceptibility for CuTe2O5. The circles correspond
to experimental data (Ref.[16]) and the solid line corresponds to calculated susceptibility based on a
2D-coupled dimer model.

The optimal values of α1 and α2 as well as the strength of the primary interaction J4

and the effective g factor were obtained by fitting the QMC results for the susceptibility,
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χth = 〈(Sz − 〈Sz〉)2〉 (3.5)

with the experimental susceptibility [in (emu/mol)] at intermediate to high temper-

atures via [27] χ = 0.375(g2/J)χth. To simulate the low-temperature region of the

susceptibility data, we included the respective Curie contribution from impurities as

χCW = Cimp/T . The calculated susceptibility in comparison to experimental data is

shown in Fig. 3.14.

The best fit corresponds to the intradimer exchange integral J4=92.4 K, very close to

the value proposed by Deisenhofer et.al. [16] for the strongest dimer coupling. The optimal

value of the g factor=2.17 was found to be slightly larger than the spin only value of g=2,

in agreement with ESR measurements [16]. The optimal values for the coupling ratios

in Equ. 3.4 were found to be α1=0.27 and α2=0.07, rather close to the estimates, 0.28

and 0.11, respectively, obtained using the second-order perturbation relationship between

exchange interaction (J) and the hopping integral (t) given by the NMTO-downfolding

study. The theoretically estimated ratio of strongest interdimer and structural intradimer

interaction, given by α2, was found to be in good agreement with that obtained from the

analysis of recent electron-spin-resonance measurements by Eremina et.al. [28]. The weak

J1 interaction turned out to be of antiferromagnetic nature giving rise to a positive sign

for α2.

With the stochastic series-expansion implementation of the quantum Monte Carlo

method, it is possible to simulate quantum spin models in an external field. In Fig. 3.15,

we present the computed magnetization as a function of temperature M(T) for various

magnetic fields strengths and in Fig. 3.16 we show the comparison of M(T) for the model

proposed in this work and the alternating chain model of Deisenhofer et.al. [16] for

H =12.7 T and H =31.7 T. Two models show distinctly different behavior at moderate

to high magnetic fields. In the inset of Fig. 3.15 we show the magnetization curve for

CuTe2O5 as a function of applied magnetic field up to the saturation field at T=10 K.

While it would be admittedly difficult to reach the saturation field experimentally, part

of this data may be directly compared with experiment.

We also calculated the specific heat Cv(T) for both models and the results are pre-

sented in Fig. 3.17. While the overall qualitative shapes of the Cv(T) versus temperature

curves for both models are similar, there are important quantitative distinctions which

capture the different nature of the models. Our above computed thermodynamic quan-

tities provide a useful framework to test the validity of our proposed model in terms of

further experimental measurements.
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Fig. 3.15: Magnetization plotted as a function of temperature for the 2D-coupled dimer model of CuTe2O5

in an applied magnetic field of strengths h/J=0.2, 0.5, 1.0 (bottom to top) which correspond to H=12.7,
31.7, 63.4 T. The inset shows the magnetization versus H upto the saturation magnetic field at T=10 K.

Fig. 3.16: Magnetization plotted as a function of temperature for the 2D-coupled dimer model of CuTe2O5

and the alternating chain model of Ref.[16] for two values of the magnetic field H=12.7 T and H=31.7 T.
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Fig. 3.17: Specific heat plotted as a function of temperature for CuTe2O5 for the 2D-coupled dimer model
(solid line) and the model of Ref.[16] (dashed line).

3.6 Summary and outlook

The analysis of the electronic structure of CuTe2O5 by first-principles NMTO-downfolding

calculations as well as the calculation and examination of susceptibility data by the QMC

method lead to a unique description of this system as a 2D coupled dimer model. The

strongest Cu-Cu interaction is between Cu pairs belonging to different structural dimer

units and connected by two O-Te-O bridges. Two additional in-plane interactions of

about 1/3 and 1/10 of the strongest interaction have been found; the latter one being the

structural intradimer interaction. This leads to a somewhat different model compared

to recent theoretical considerations in Ref.[16], which suggest an alternating spin-chain

system with strong interdimer and intradimer couplings as the simplest possible model

for the CuTe2O5. Based on our proposed model, we calculated the magnetization and

specific heat which may be compared with new experimental measurements. We hope

that our work will stimulate further experimental studies.
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Chapter 4

Electronic structure of La2CuO4 in the T

and T′ crystal structures.

Content of this chapter has been published in: Hena Das and T. Saha-

Dasgupta, Phys. Rev. B 79, 134522 (2009).

4.1 Introduction

As we have mentioned in the introductory chapter of this thesis, the undoped compound

La2CuO4 serves as the parent compound of the hole-doped cuprate superconductors, e.g.,

La2−xBaxCuO4, which crystallizes in K2NiF4-type T structure [1], as well as the parent

compound of the electron-doped cuprate superconductors, e.g., La2−xCexCuO4+y, which

however crystallize in Nd2CuO4-type T′ structures [2]. For the benefit of understanding

the mechanism of high-temperature superconductivity (HTS), it would have been inter-

esting to study the properties of the parent compounds in both hole-doped and electron-

doped cases. The situation, however, is complicated by the fact that the preparation of

undoped T′-structured parent compound is hindered by the structural phase transition to

T structure occurring around x≈0.05 [3]. One trick to synthesize La2CrO4 in the T′ phase

is to the replacement of La by smaller but isovalent ions, such as Y, Lu, Sm, Gd. . .[4].

The interesting observation was, the structural phase transition from T to T′ is coupled

to a change in resistivity of several orders of magnitude. La2CuO4 in the T′ structure

is strongly metallic (dρ/dT > 0), while in the T structure it is insulating (dρ/dT < 0)

(see Fig. 4.1). While this finding hints toward an interesting implication on mechanism of

superconductivity, the experimental situation is faced with difficulties [6] such as the issue

of strain effect (since the fabrication was carried out by thin-film synthesis technique),

oxygen content of the sample, etc. Therefore we took the task of investigating electronic

structure of La2CuO4 in T and T′ using first-principles techniques, which is devoid of ex-

perimental difficulties concerning synthesis. A description of this investigation has been

summarized in this chapter.

It is widely accepted that correlation plays a significant role in the correct description

of the electronic structure of cuprates [7]. The density-functional based theories within the

local-density approximation (LDA) on the other hand are expected to take into account

the structural and chemical intricacies which is needed for the study involving comparison
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Structural details

Fig. 4.1: Comparison of resistivity of La2CuO4±y thin films with the T- and T′-structure for y ∼ 0
(taken from Ref.[5]). The vary high resistivity in the T′ phase below 150 K was not measurable with
their experimental set up.

of electronic structure of La2CuO4 in two different crystal structures.We therefore carried

out calculations combining these two aspects within the framework of LDA+dynamical

mean field theory (DMFT). The choice of DMFT for the many-body part is driven by

the fact that the many-body formulation of DMFT takes fully into account the temporal

fluctuations, though freezes the spatial fluctuations. This aspect makes it ideally suited

to describing correlated metals as well as insulators, as is needed for the present problem.

4.2 Structural details

Both T and T′ crystal structures of La2CuO4 are determined to be in body-centered tetrag-

onal I4/mmm structure [8]. La, Cu, and the plane oxygen (O1) occupy the identical sym-

metry positions in T and T′ given by 4e [(0,0,±uLa)], 2a [(0,0,0)] and 4c [(0,1/2,0),(1/2,0,0)],

respectively. As we have discussed before in our introductory chapter, the two structures

differ in the position of the out-of-plane oxygen (O2) (see Fig. 4.2). In case of T structure,

O2 occupies the position directly below or above Cu (given by 4e) while for T′ it occupies

the position directly below or above O1 (given by 4d positions). This results into struc-

tures consisting of square CuO2 planes without any apical oxygen in T′ structure instead

of two-dimensional (2D) array of CuO6 octahedra in T structure. The in-plane lattice

parameter shows an expansion with a slightly smaller c/a ratio in case of T′ structure
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Fig. 4.2: Crystal structure of T (left panel) and T′ (right panel) structures. The rear-earth, Cu, and
O atoms are represented by the large, mediums and small sized balls, respectively. The in-plane and
out-of-plane oxygen atoms are represented by dark and light shades, respectively.

(a=4.005 Å, c=12.550 Å) compared to T structure (a=3.803 Å, c=13.150 Å), resulting

into about 6% expansion in volume [9].

4.3 One-particle electronic structure

Fig. 4.3 shows the LDA band structure of La2CuO4 in T and T′ structures calculated in

linear muffin-tin-orbital basis projected on to Cu dx2−y2 character. We find that, while

the basic electronic structure is similar between T and T′ structures with a single pdσ

antibonding band arising out of Cu dx2−y2 and O1 pσ crossing the Fermi energy (EF ),

the details of the low-energy features are markedly different in two cases in terms of the

position and shape of the saddle point. The obtained band structure in T′ structure is

found to be similar to that of reported band structure of isostructural Nd2CuO4 [10].

This happens due to change in position of the out-of-plane oxygen, O2. O2, which is

positioned directly below O1 for T′ structure, develops a strong hybridization with O1

resulting into O1 pz-O2 pz band lying close to EF . The O2 px − py originating from

square O22 layer in T′ structure also is energetically positioned close to EF . In case of

T structure on the other hand the conduction band is significantly mixed with Cu 3z2

and O2 pz character due to short Cu-O2 distance, with O2 serving the purpose of apical

oxygen in CuO6 octahedra. The resulting difference in case of T′ structure pushes down

the energy of the saddle point and changes the shape of the 2D Fermi surface from square

oriented in (π,π) direction in T structure to a rounded square oriented in (π,0) direction
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One-particle electronic structure

Fig. 4.3: Band structure of La2CuO4 in T (left panel) and T′ (right panel) structures plotted along the
high symmetry points of the body centered tetragonal BZ. The fatness associated with each band is
proportional to the orbital character of Cu dx2−y2 . The single band shown as thick line is the effective
one band obtained by NMTO downfolding technique. The inset shows the corresponding Fermi surfaces.

in T′ structure (see inset of Fig. 4.3).

As discussed above, the low-energy-band structures are described by a single pdσ

antibonding band. This gives rise to a single sheet in the Fermi surface which is also

seen in the photoemission experiment [11]. It is therefore natural that most theories

of HTS cuprates [12] are based on single-band t-t′-t′′-U -like or t-t′-t′′-J-like model with

an effective Cu dx2−y2-like orbital per CuO2 layer. t, t′, t′′, ..... denote the nearest-

neighbor, second-nearest-neighbor, third nearest-neighbor and further nearest-neighbor

hopping integrals, respectively, on a square lattice with Cu ions. In order to derive a

single-band one-particle Hamiltonian, we performed NMTO downfolding calculations by

integrating out all the degrees of freedom other than Cu dx2−y2 . Such an approach for

single-band modeling of hole-doped cuprates [13] has been found to be highly successful.

The resulting single band for La2CuO4 in T and T′ structures, in comparison to full LDA

band structure, is also shown in Fig. 4.3.

In Figs. 4.4(a) and (b), we show the plot of such Wannier-type functions for both T

and T′ structure projected on to the CuO2 plane and perpendicular to the CuO2 plane,

respectively. The Wannier-type functions have the central Cu dx2−y2 symmetry, which

antibonds to O1 pσ in its immediate neighborhood a general feature of the electronic

structure of HTS cuprates. The tails extending to further neighbors reflect the structure

specific trend between T and T′. The immediate feature to notice is that the Wannier-type

functions of T′ structure appears to be more delocalized in plane and more compact out of

plane compared to that of T structure. If one interprets the hopping integrals as overlap

integrals for such Wannier-type functions, one may realize that this larger amplitudes at
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Fig. 4.4: Effective Cu dx2−y2 Wannier-type functions and the hopping integrals of a single-band model
of La2CuO4 in T (left panels) and T′ (right panels) structures. (a) Wannier type functions projected on
to CuO2 plane (ab plane) and (b) Wannier-type functions projected on to plane perpendicular to CuO2

plane (ac plane). Lobes of opposite signs are colored as black and gray. (c) In-plane hopping integrals in
the basis of effective Wannier-type functions, plotted as a function of Cu-Cu distances, measured in unit
of lattice constant (alat).
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the further neighbor oxygen results into larger further neighbor in-plane hoppings in a

one-band model. The plot of the functions seen from side (c.f. Fig. 4.4(b)) shows the out-

of-plane orbital characters of the conduction-band Wannier-type functions. Considering

the case of T structure, starting from the central Cu atom and going in the a direction,

we see Cu dx2−y2 antibond to neighboring O1 px, which itself anti-bonds to 3z2 on the

next Cu. From here and moving along the c direction, we see also 3z2 antibond to O2

pz, which itself bonds to further neighbor La orbitals. For T′ structure we find about the

same amount of Cu dx2−y2 and nearly same amount of O1 character but negligible Cu 3z2

and certainly no O2 pz since due to symmetry O2 pz cannot bind to Cu dx2−y2 any more.

We on other hand find with diffused Cu s character that causes inflation of the black lobe

of O1-like tail compared to the gray lobe. Constructing the real space Hamiltonians in the

basis of the above discussed Wannier-type functions for the conduction band, as shown in

Fig. 4.4(c), exhibit a reduction in nearest-neighbor hopping interaction t in T′ structure

compared to T structure, which is governed by the increase in Cu-O1 bond length in

case of T′ structure compared to T structure. We however, notice an enhancement of

the next-nearest-neighbor hopping, t′, and other longer-ranged hoppings, t′′, and so on

in T′ structure compared to T structure in agreement with conclusions drawn on basis

on the plot of Wannier-type functions. The spread of the single-band Wannier function

and the resulting tight-binding Hamiltonian may be expressed in terms of the so-called

range parameter, r, as introduced in Ref.[13]. The r-parameter is found to be 0.14 for T

structure and 0.4 for T′ structure. As has been found in Ref.[13], the range is intimately

connected to the energy of axial orbital, a hybrid between Cu s, 3z2, and apical oxygen

pz, which is governed by the distance of apical oxygen to CuO2 plane. In cases of short

distances of apical oxygen to CuO2 plane, finite mixing of Cu s with Cu 3z2 and apical

oxygen pz character causes the energy of the hybrid axial orbital to be pushed up in

energy which in turn reduces the range of the in-plane hoppings. While such a scenario

is valid for T-structured La2CuO4, in absence of the apical oxygen in T′ structure such

mechanism is not operative for T′-structured La2CuO4, giving rise to the long range of

the in-plane hoppings.

4.4 LDA+DMFT results and discussion

In the next step, we carried out dynamical mean field theory (DMFT) calculations on the

2D single-band Hubbard Hamiltonian given by,

H =
∑
i,j,σ

ti,jc
†
iσcjσ + U

∑
i

ni↑ni↓ − µ
∑
i

ni (4.1)

where ti,js are the single-particle hopping interaction between the effective Cu dx2−y2

as obtained in downfolded NMTO-Wannier-type function basis. niσ = c†iσciσ, where c†iσ
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creates a σ-spin electron at site i and U , is the Hubbard interaction. The double-counting

correction is absorbed in the chemical-potential shift µ. The quantum impurity problem

within DMFT in our calculations was solved by the numerically exact quantum Monte

Carlo (QMC) scheme [14]. The computational effort becomes prohibitive rather quickly

as one lowers the temperature since in order to maintain the accuracy of the calculation

one needs to increase the imaginary time slices as one increases β. The results reported in

the following are done for β = 30 (in unit of eV−1) with 290 slices in imaginary time and

100 000 QMC sweeps. The maximum entropy method [15] had been used for analytical

continuation of the diagonal part of the Greens function matrix to the real energy axis to

get the DMFT spectral density.

The choice of Hubbard U is a delicate issue in the whole calculation scheme. The choice

of U for a given compound depends on the choice of representation basis and therefore

depends on the model used for the description of the compound. The U is expected to be

significantly screened in case of a single-band model due to the much delocalized character

of the effective single-band Wannier-type function. The Slater integral computed in the

basis of the computed Wannier-type functions [16] show significant reduction compared

to that calculated using constraint density-functional calculations [17] for cuprates. This

is also in accordance with the recent proposal by Comanac et.al. [18] obtained combining

DMFT studies and analysis of optical spectra of cuprates that the correlation strength

in the cuprates is actually smaller than the critical U for a Mott transition in the non-

magnetic sector. In the calculations reported in the following, we fixed the value of U to

4.5 eV. We kept the same value of U between the T and T′ structures although the T′

structure is expected to have a lower U value compared to T structure due to the more

delocalized nature in case of T′ structure.

The calculated spectrum as presented in Fig. 4.5 show formation of lower and upper

Hubbard bands, signaling the correlated nature of the compounds. Interestingly, for T′

structure we find simultaneous presence of Hubbard sub-bands and a coherent quasiparti-

cle peak, compared to that of an insulator as found in the case of T-structured La2CuO4.

We note that the conclusions drawn are based on the finite temperature calculations,

carried out at a temperature of 580 K. Since the overall bandwidths of the single-electron

spectra for both T and T′ are about 4 eV and the U value used in the DMFT calcu-

lations is 4.5 eV, which may be about or slightly less than the critical U value for the

Mott transition, the T=0 state might be metallic even for the T-structured La2CuO4, as

hinted in Ref.[18]. It will be therefore fair to claim that the T-structured La2CuO4 has

a lower coherence temperature (lower than 580 K) compared to that of the T′-structured

La2CuO4, indicating the more metallic character of the T′-structured La2CuO4 compared

to T structure.

We further note that the bandwidth of the single-particle density of states (DOS) for T′

structure is somewhat smaller compared T structure. Nevertheless our finite temperature
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Fig. 4.5: DMFT spectral function at T=580 K (thick line) and the LDA DOS (thin line) La2CuO4 in T
(left panel) and T′ (right panel) structures. The zero of the energy is set at µ.

calculations find the metallic solution of the T′ structure and the insulating solution of

the T structure. This apparently counterintuitive result may be explained in terms of

the fact that, instead of the bandwidth alone, what matters is the shape of the single-

particle density of states, a good measure being the second moment of the density of

states. The band energy is therefore measured [19] by (
µ2

µ0

), where µ2 and µ0 are the

second and zeroth moments of the density of states. We found the second moment is

determined by the interplay between the bandwidth, governed by the nearest-neighbor

hopping parameter t and the range parameter r. For T′ structure although the bandwidth

is smaller than T structure, the r value is larger compared to T structure, which makes

the second moment to be larger and hence the band energy to be larger.

4.5 Summary and outlook

To conclude, using combination of LDA to take into account the composition and struc-

tural aspect, and DMFT to take into account the correlation aspect, we have studied

the electronic structure of T- and T′-structured La2CuO4. Our calculation shows the

change in position of the out-of-plane oxygen between T and T′ structures, resulting into

significant changes in the one-particle electronic structure. Upon incorporation of cor-

relation effect, these differences translate into insulating solution in case of T structure

and correlated metallic situation in case of T′ structure for calculations carried out at a

temperature of 580 K. This indicates higher coherence temperature and therefore more

metallic character for T′ structure compared to T structure. Our study suggest that both
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T- and T′-structured cuprates are close to or even below the critical U for Mott tran-

sition, and therefore far from a very strong-coupling regime, a fact which has been also

suggested in Ref.[18]. As a result, the delicate band structure differences between T- and

T′-structured La2CuO4 cause the interesting effect of the more metallic character in one

case over the other. Our findings seem to support the initial experimental studies made

by Tsukada et.al. in this context. This should be explored more carefully in the future.

Our LDA+DMFT calculations do not take into account the presence of antiferromagnetic

fluctuations. We carried out antiferromagnetic LDA+U calculations, that gave rise to a

small energy gap of ≈ 0.1 eV for T′-structured La2CuO4, compared to energy gap of 1.8

eV for T-structured La2CuO4. However, the values of the band gaps are overestimated,

which is a general drawback of LDA+U approach, it shows T′ phase to be more metallic

than T. Therefore, the obtained results may be considered as the effect of correlation on

the single-particle band structure arising out of presence and absence of apical oxygen in

T and T′ structures. Our study nevertheless provides useful hint to future studies.
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Chapter 5

Evidence of kinetic-energy-driven

antiferromagnetism in double perovskites.

Content of this chapter has been published in: Prabuddha Sanyal, Hena

Das, and T. Saha-Dasgupta, Phys. Rev. B 80, 224412 (2009).

5.1 Introduction

The discovery of room-temperature tunneling magnetoresistance (MR) and half-metallic

ferromagnetic behavior of Sr2FeMoO6 (SFMO) oxides with a Curie temperature Tc of

about 400 K [1]-[6] has opened the possibility of designing spintronics materials operating

at room temperature. However, unlike colossal magnetoresistive compounds as mangan-

ites, this MR does not arise from electron-phonon interactions. Rather, it is extrinsic,

of tunnelling magnetoresistive origin. Since the report of the large MR effect and high

magnetic transition temperature, a number of experimental studies such as NMR [7],

X-ray emission spectroscopy [8], Hall measurements [9] and magnetic measurements [10]

have been carried out to characterize various properties of this material. There have been

also a number of theoretical studies involving both first-principles calculations [11]-[14] as

well as model calculations [15]-[20]. The unusually high ferromagnetic transition temper-

ature in Sr2FeMoO6 and related material such as Sr2FeReO6 was rationalized [11, 17] in

terms of a kinetic-energy driven mechanism which produces a negative spin polarization

at otherwise nonmagnetic site such as Mo or Re. Following this idea, a double-exchange

like two-sublattice model was introduced and studied by different groups [15, 16],[18]-

[20]. While most of the studies [15, 16, 19] were restricted only to ferromagnetic phase,

some of the studies [16, 20] were extended to other competing magnetic phases too. Very

recently [21], the problem has been studied in detail in terms of a full numerical solu-

tion of spin-fermion model and as well as in terms of reduced, classical magnetic model.

These studies predict that when the competing magnetic phases are taken into account,

the electron-doped model systems beyond a certain doping prefers to have antiferromag-

netic (AFM) arrangement of Fe spins compared to ferromagnetic (FM) arrangement of

the undoped system. The predicted antiferromagnetic phase in electron-doped system

is kinetic-energy-driven rather than superexchange driven, as is the case, for example, in

Sr2FeWO6 (SFWO) [22], which is an insulating antiferromagnet with Néel temperature of
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≈ 20 K. The superexchange-driven antiferromagnetic phase is necessarily insulating while

the kinetic-energy-driven AFM phase may not be so. The prediction of such an antifer-

romagnetic phase of different origin is therefore of significance. While the kinetic-energy-

driven antiferromagnetic phases have been suggested in hole-doped rare-earth manganites

(e.g., the charge-exchange phase at half doping [23]), to the best of our knowledge, till date

no reports of such analogous phases in double perovskites exist, thereby, opening up the

possibility of experimental exploration in this front. However, the aforementioned model

calculations were carried out in two dimension and with single band, which was justified

by the assumption that the dominant nearest-neighbor B-B′ interactions are operative

between orbitals of same symmetry and within a given plane. These restrictions are not

strictly true. Furthermore, the magnetic ordering in real material is three dimensional. A

full three-dimensional, all-orbital calculation without these approximations, is therefore

necessary to put the possible existence of the AFM phase in firm footing.

Considering the above-mentioned points, it is therefore, of interest to study the prob-

lem of electron doping using first-principles density-functional theory (DFT) -based cal-

culations. The first-principles calculations which take into account all the structural and

chemical aspects correctly is expected to provide more realistic scenario and verification

of predictions made by model calculations. The Sr ions in SFMO can be substituted

for trivalent cations, such as La, leading to Sr2−xLaxFeMoO6. This would cause electron

doping in the system, with 1 + x electron per formula unit in the conduction band, com-

pared to 1 electron per formula unit in the undoped SFMO situation. To our knowledge,

there exists very few first-principles study of the La-doped SFMO system. Few studies

[24, 25] that exist explored only the ferromagnetic phase, did not consider the other com-

peting magnetic phases and were restricted mostly to Sr-rich part of the phase diagram.

Motivated by the findings of the model calculations [23], we considered it worthwhile to

span the whole concentration range from x = 0.0 (i.e., Sr2FeMoO6) to x = 2.0 (i.e.,

La2FeMoO6) and to study the relative stability of the various magnetic phases as one

increases the carrier concentration through the increased doping of La.

The chapter is organized in the following manner: §: 5.2 contains the details of calcu-

lations. §: 5.3 is devoted to results which consist of four subsections: 5.3.1: structural

details, 5.3.2: total-energy calculations, electronic structure, and relative stability of var-

ious magnetic phases in doped compounds, 5.3.3: determination of lowenergy, few-orbital

Hamiltonian by NMTO downfolding and 5.3.4: calculations of magnetic phase diagram

and magnetic transition temperatures in terms of low-energy Hamiltonian. The paper

concludes with §: 5.4 containing summary and outlook.
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a b

Fig. 5.1: The Fe sublattice ordering of Sr2−xLaxFeMoO6. Shown are the A-type(left panel) and G-type
(right panel) antiferromagnetic arrangement of Fe spins. In case of A-type antiferromagnetism the Fe spins
in-plane are ferromagnetically coupled while Fe spins between two adjacent plans are antiferromagnetically
coupled. For G-type antiferromagnetism, the Fe spins are antiferromagnetically coupled both out-of-plane
and inplane. The shaded box indicate the unit cell of two formula unit supercell.

5.2 Computational Details

The first-principles DFT calculations were carried out using the plane-wave pseudopo-

tential method implemented within VASP. We considered exchange-correlation function-

als within generalized gradient approximation (GGA) and GGA+U. We used projector-

augmented wave potentials and the wave functions were expanded in the plane-wave basis

with a kinetic-energy cutoff of 450 eV. Reciprocal-space integration was carried out with a

k-space mesh of 6×6×6. Two sets of supercell calculations were carried out, one with two

formula unit and another with eight formula unit. The two formula unit supercells with

two inequivalent Fe atoms can accommodate the ferromagnetic spin alignment of Fe spins

and the A-type antiferromagnetic spin alignments of Fe spins. The eight formula unit

supercells with eight inequivalent Fe atoms in the unit cell, in addition to FM and A-type

AFM, can accommodate G-type antiferromagnetic ordering of Fe spins (see Fig. 5.1).

For extraction of a few-band tight-binding Hamiltonian out of full DFT calculation

which is used as input to multiorbital, low-energy Hamiltonian-based calculations, we

carried out NMTO-downfolding calculations. The constructed multi-orbital, low-energy

Hamiltonian solved by means of real space based exact diagonalization technique for

finite-size lattice of dimensions 4×4×4, 6×6×6, and 8×8×8..
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Table 5.1: Optimized cell parameters and the atomic positions for Sr2FeMoO6 and La2FeMoO6. Fe and
Mo ions are situated at the high-symmetry Wykoff positions 2a and 2b, given by (0,0,0) and (0.0, 0.0,
0.5), respectively. For I4/mmm symmetry Sr/La also sites in the high-symmetry Wykoff position given
by (0.5, 0.0, 0.25) but sits in a general position for P21/n symmetry.

SFMO LFMO

a 5.57 a 5.78 a 5.65

b 5.57 b 5.78 b 5.63

c 7.80 c 7.75 c 7.95

β 90.04

x y z x y z x y z

Sr 0.5 0.0 0.25 La 0.5 0.0 0.25 La 0.010 0.002 0.259

O1 0.248 0.248 0.0 O1 0.245 0.245 0.0 O1 0.504 0.000 0.255

O2 0.0 0.0 0.248 O2 0.0 0.0 0.245 O2 0.248 0.257 0.003

O3 0.253 0.244 0.497

5.3 Result and discussions

5.3.1 Structural details

Sr2FeMoO6 crystallizes in body-centered tetragonal space group with I4/mmm symme-

try. The crystal structure of SFMO is well characterized. The crystal structure of La

doped Sr2FeMoO6 on the other hand is controversial. Some of the study [26, 27] reports

that though I4/mmm symmetry is retained for small doping of La, for doping beyond

x = 0.4 or so, the symmetry changes to P21/n. The other measurements [24] however

reports that all compounds of Sr2−xLaxFeMoO6 for x=0, 0.25, 0.5, and 1.0 crystallize

in I4/mmm symmetry. Unfortunately, the information of the detailed crystal structure

data are limited due to the facts that (a) the compounds till now have been synthe-

sized only for La concentrations less than or equal to 1, (b) increasing concentration

of La leads to increased disorder which prohibits accurate measurement of the underly-

ing symmetry. While in the following, we have primarily reported the results assuming

I4/mmm symmetry, we have also carried out calculation for P21/n symmetry for the

end member, La2FeMoO6 (LFMO). The crystal structure corresponding to P21/n sym-

metry for La2FeMoO6 was obtained starting with initial parameters of x=0.4 as reported

in Ref.[28] and then performing total-energy optimization of the initial structure. The

P21/n symmetry structure has been found to be energetically lower in energy by 90 meV

than the corresponding I4/mmm-symmetry structure. However, as described later, the
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primary conclusion of our results is found to remain unaffected by this possible change

in symmetry. Table 5.1 shows the theoretically optimized crystal structures obtained

using plane-wave basis of SFMO and that of LFMO assuming I4/mmm symmetry as

well as P21/n symmetry. Optimization has been carried out both in terms of GGA and

GGA+U. The results are found to differ only marginally. The values quoted in Table I

were obtained with GGA.

The volume for LFMO is found to expand with respect to that of SFMO, in agreement

with experimental trend [24, 26] of increasing volume with increased La doping. Assuming

I4/mmm symmetry, as is seen from Table 5.1, the internal parameters corresponding to

oxygen positions, which are the only free parameters within I4/mmm space group, change

little upon changing Sr by La. The unit-cell volume for various intermediate members

of the series obtained by interpolation from the optimized lattice parameters of the end

members using Vegars law, 120.99 Å3 for SFMO, 123.27 Å3 for Sr1.5La0.5FeMoO6, and

125.56 Å3 for SrLaFeMoO6, agree well with the experimental data available for I4/mmm

symmetry in terms of volume expansion, given by 121.4, 124.0, and 124.88 Å3, respectively

[24]. The crystal structure for the doped compounds in the assumed I4/mmm symmetry

for the intermediate concentration values are, therefore, obtained by using Vegards law

for interpolation of cell parameters keeping the atomic positions fixed.

5.3.2 Total energy, electronic structure, and relative stability of

magnetic phases

Fig. 5.2: The energy difference between FM and AFM-A phase plotted as a function of La concentration.
The FM phase becomes unstable beyond a critical concentration of La both within GGA and GGA+U.
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First, we carried out total-energy calculations of Sr2−xLaxFeMoO6 in I4/mmm sym-

metry for the FM alignment of Fe spins and the AFM alignment of Fe spins. The energy

difference between FM and AFM-A spin configuration per formula unit as a function of

La concentration is plotted in Fig. 5.2, for both GGA and GGA+U calculation. Focusing

on to GGA results first, as is evident from Fig. 5.2, the stability of the FM phase with

respect to AFM configuration is gradually reduced as the La concentration is increased.

As the concentration is increased beyond x=1.5 or so, the FM phase becomes unstable

and the AFM phase becomes the ground state, in agreement with prediction of model

calculations [20, 21]. The total and magnetic moments at Fe and Mo sites, as obtained

within GGA, are listed in Table 5.2. The net magnetic moment at the FM phase reduces

as the La concentration is increased, which is due to the increased moment at the Mo

site. Such behavior has been also observed in experiment [24]. Especially, photoemis-

sion studies have confirmed that electron injection occurs at the Mo site, increasing the

moment on that site [29]. While the moment at the Fe site stays more or less the same

between ferromagnetic and antiferromagnetic phases, the magnetic moment at the Mo

site is found to be systematically smaller in the AFM phase compared to FM phase.

Table 5.2: Magnetic moments at Fe and Mo sites, and the total magnetic moment in FM and AFM-A
phase of Sr2−xLaxFeMoO6 in a two formula unit calculation. S3LFMO, SLFMO, and SL3FMO refer to
Sr1.5La0.5FeMoO6, SrLaFeMoO6, and Sr0.5La1.5FeMoO6, respectively.

SFMO S3LFMO SLFMO SL3FMO LFMO

FM Fe 3.68 3.59 3.53 3.50 3.52

Mo -0.23 -0.45 -0.71 -0.80 -0.85

Total 4.0 3.5 3.0 2.5 2.0

AFM Fe 3.69 3.60 3.52 3.42 3.50

Mo -0.05 -0.03 -0.04 -0.18 -0.70

Total 0.0 0.0 0.0 0.0 0.0

In order to check the influence of the possible change in crystal symmetry that may

happen between SFMO and LFMO, we calculated the total-energy difference between FM

and AFM-A spin configurations, assuming LFMO in P21/n symmetry with theoretically

optimized structure. The calculated EFM -EAFM−A came out to be 0.094 eV per formula

unit, confirming the stabilization of AFM phase for LFMO. While the possible change in

crystal symmetry from I4/mmm to P21/n for La-rich samples is expected to change the

precise La concentration at which FM to AFM transition happens, the general trend of

AFM phase becoming progressively more favorable upon increasing La doping therefore

would remain hold good.

Fig. 5.3 shows the GGA density of states corresponding to FM phase of SFMO, LFMO,
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Fig. 5.3: The GGA density of states corresponding to SFMO, SLFMO, L3SFMO, and LFMO in ferro-
magnetic configuration. The density of states projected onto Fe, Mo, and O are represented by solid
black, green (gray), and shaded gray area. The upper and lower panels correspond to majority- and
minority-spin channels. Zero of the energy is set at the GGA Fermi energy.

and the doped compounds, SrLaFeMoO6 and Sr0.5La1.5FeMoO6 in I4/mmm symmetry.

Focusing on the well-studied [11] DOS of SFMO, we find that the Fe d states are nearly full

(empty) in the majority (minority)-spin channel while the Mo d states are nearly empty

in the majority-spin channel and partially filled in the minority-spin channel. This is in

conformity with the halfmetallic character of the compound and also with the nominal

Fe3+ and Mo5+ valences. Due to the octahedral oxygen surrounding of Fe and Mo atoms,

the Fe d and Mo d states are split up into t2g and eg, the highly delocalized state crossing

the Fermi level in the minority-spin channel being of mixed Fe t2g-Mo t2g character.

The empty Mo t2g states in the majority-spin channel is found to be highly localized

giving rise to peaked structure positioned at about 1 eV above the Fermi energy. As

each of the Sr atoms is replaced by a La atom, one extra electron is introduced in the

system which populates the hybridized Fe t2g-Mo t2g state in the minority-spin channel,

keeping the overall structure of the density of states intact. The Fermi level therefore

progressively moves up like a rigid-band fashion as x is increased and eventually hits

the Van Hove singularity of the Mo t2g states in the majority-spin channel. The FM

solution becomes unstable at this point. This is schematically shown in the left panel

86



Section 5.3

Ef

Ef

Fig. 5.4: Schematic showing the mechanism stabilizing the AFM phase over FM phase. As the La doping
is increased, the Fermi level (Ef ) shifts toward right.

of Fig. 5.4. Interestingly the DOS corresponding to the mixed Fe t2g-Mo t2g character

in the minority-spin channel also exhibits the singularity at the same energy due to the

essentially two-dimensional-like nature of the hoppings between Mo t2g and Fe t2g Wannier

functions as will be discussed in the following section.

Fig. 5.5 shows the density of states of SFMO, LFMO, and the doped compounds,

SrLaFeMoO6 and Sr0.5La1.5FeMoO6 in the antiferromagnetic A phase, as calculated within

GGA. In the two formula unit supercells, there are two inequivalent Fe atoms, Fe1 and

Fe2, whose spins are antiferromagnetically oriented. The majority channel of Fe1 therefore

is identical to the minority channel of Fe2 and vice versa. The induced moments at two

inequivalent Mo sites also become antiferromagnetically aligned, giving rise to a net AFM

arrangement with a zero total moment. Shown in Fig. 5.5, are therefore, the partial DOS

corresponding to one of the sublattice since that of the other sublattice is identical with

majority and minority spins reversed. We find that the Mo-Fe hybridized state crossing

the Fermi level, has a three peak Van Hove structure. This arises because of the fact that

due to creation of sublattices in the AFM phase, the Mo hopping becomes restricted to

a reduced dimension as the Mo electrons can effectively hop to Fe sites with a specific

orientation of Fe spins and not in another. Interestingly, such a three-peak structure

formation is also seen in model calculation (see Fig. 5.3 of Ref.[21]). As found in the

case of FM DOS, the gross features of the density of states remain unchanged with the

La doping apart from the upward shift of the Fermi energy. Reaching LFMO, the Fermi

level lands up in the dip of the three-peak structured DOS, justifying the stability of the

antiferromagnetic phase, as shown in the schematic of Fig. 5.4.

The antiferromagnetic state becomes energetically favorable, when the filling is such

that it starts populating the Mo states in the majority-spin channel of the FM DOS,

which is highly localized due to the strong preference of the Mo-Fe hopping in one spin

channel and not in another. The antiferromagnetic configuration of Fe spins, on the other
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Fig. 5.5: The density of states corresponding to SFMO, SLFMO, L3SFMO, and LFMO in the A-type
antiferromagnetic configuration. The density of states projected onto Fe, Mo, and O are represented by
solid black, green (gray), and shaded gray area. Zero of the energy is set at the GGA Fermi energy.

hand, allows both Mo down-spin as well as up-spin electron to hop, albeit in different

sublattices, thereby stabilizing the AFM phase through kinetic-energy gain.

In order to check the influence of the missing correlation effect in GGA, we also

carried out GGA+U calculations with a typical U value [30] of 4 eV and J value of 1

eV, applied at the Fe site. The calculated energy difference between FM and AFM-A

configuration as a function of La doping is shown in Fig. 5.2, along with GGA results.

The application of U is found to increase the relative stability of AFM phase due to

the increased superexchange contribution to antiferromagnetism in addition to kinetic-

energy-driven antiferromagnetism.

In Fig. 5.6, we show the GGA+U DOS for LFMO, plotted for both FM and AFM-A

phases. It is observed that the gross features of the DOS close to Fermi energy, remain

similar to GGA, in particular, the Fermi energy in the FM phase remains pinned to

the unoccupied Mo t2g level in the FM phase. However, the hybridization between the

Fe and Mo decreases. Nevertheless, the antiferromagnetic state is still found to have a

finite density of states at Fermi energy, signifying the dominance of kinetic-energy-driven

contribution over that of superexchange.

As already mentioned, considering the two formula unit supercell, the possible AFM
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Fig. 5.6: DOS for LFMO in FM and AFM-A phase, using GGA+U.

arrangement that can be achieved is of A type. In order to achieve the G-type AFM

ordering involving both in-plane and out-of-plane AFM ordering, one needs to increase the

size of the supercell to at least eight formula unit. Eight formula unit supercells also allow

to probe the concentration range intermediate to x=1.5 and x=2.0, the region where the

crossover from FM to AFM happens. Since the qualitative conclusions remain unchanged

between GGA and GGA+U, the eight formula unit calculations were carried out only for

GGA. The energy differences per formula unit obtained for different concentrations of La

between FM and AFM-A, and between FM and AFM-G phases are listed in Table 5.3.

As found in the calculations with two formula unit, the stability of the FM phase is found

to gradually decrease as the La concentration increases. Among the two antiferromagnetic

phases, the G-type AFM is found to be energetically very close to A-type AFM phase,

with G-type AFM being the ground state at the end limit of doping i.e., for LFMO.
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Table 5.3: Total energy differences per unit formula in eV between FM and AFM-A, and between FM
and AFM-G for various doping of La, as obtained within eight formula unit supercell calculations.

∆E(FM - AFM-A) ∆E(FM - AFM-G)

SFMO -0.145 -0.147

SLFMO -0.076 -0.073

Sr0.5La1.5FeMoO6 -0.017 -0.008

Sr0.375La1.625FeMoO6 0.014 0.006

Sr0.25La1.75FeMoO6 0.037 0.032

Sr0.125La1.875FeMoO6 0.057 0.052

LFMO 0.066 0.069

5.3.3 Determination of low-energy, few-orbital Hamiltonian

In order to probe the variation in La concentration in a continuous manner, it is perhaps

more convenient to adopt a low-energy Hamiltonian approach. This would also allow one

to calculate the physical properties such as magnetic transition temperatures, transport,

and spin-wave spectra in a much more manageable way.

The multiorbital, low-energy Hamiltonian that is assumed to capture the essential

physics of SFMO, should consist of the following ingredients:

1. A large core spin at the Fe site.

2. Strong coupling on the Fe site between the core spin and the itinerant electron,

strongly preferring one spin polarization of the itinerant electron.

3. Delocalization of the itinerant electron on the Fe-Mo network.

From the above considerations, the representative Hamiltonian is given by,

H = εFe
∑
i∈B

f †iσαfiσα + εMo

∑
i∈B′

m†iσαmiσα

−tFM
∑

<ij>σ,α

f †iσ,αmjσ,α − tMM

∑
<ij>σ,α

m†iσ,αmjσ,α

−tFF
∑

<ij>σ,α

f †iσ,αfjσ,α + J
∑
i∈A

Si · f †iα~σαβfiβ (5.1)

The fs refer to the Fe sites and the ms to the Mo sites. tFM , tMM , and tFF repre-

sent the nearest-neighbor Fe-Mo, second nearest- neighbor Mo-Mo, and Fe-Fe hoppings,

respectively, the largest hopping being given by tFM . σ is the spin index and α is the

orbital index that spans the t2g manifold. The difference between the t2g levels of Fe and
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Mo, ∆̃ = εFe− εMo, defines the charge-transfer energy. Since among the crystal-field split

d levels of Fe and Mo, only the relevant t2g orbitals are retained, the on-site and hopping

matrices are of dimension 3×3. The Si are classical (large S) core spins at the B site,

coupled to the itinerant B electrons through a coupling J � tFM .

Given the fact that J � tFM , the Hamiltonian of Eqn. 5.1 can be cast into form

appropriate for J →∞. This gives the following Hamiltonian, with spinless Fe conduction

electrons and Mo electrons having both spin states,

H = tFM
∑
<ij>α

(sin(
θi
2

)f †iαmj↑α − eiφicos(
θi
2

)f †iαmj↓α)

+h.c.+ tMM

∑
<ij>

m†iσαmjσα

+tFF
∑
<ij>

cos(θij/2)(f †iσαfjσα)

+εFe
∑
i

f †iαfiα + εMo

∑
iσα

m†iσαmiσα (5.2)

This is the lowest-energy Hamiltonian. There is no longer any large coupling in the

Hamiltonian, and the number of degrees of freedom has been reduced to three per Fe

site and six per Mo, compared to original problem with six degrees of freedom at both

Fe and Mo sites. mj↓ and mj↑ hop to different conduction-electron projections at the

neighboring Fe sites so the effective hopping picks up a θi, φi -dependent modulation. For

example, θ = 0, φ = 0, corresponds to FM configuration with all Fe core spins being up.

Since the spin S is large and can be considered classical, one can consider different spin

configurations (ferro, antiferro, and disordered) and diagonalize the system in real space,

to obtain variational estimates of the ground state, and its stability.

We derived a Fe t2g-Mo t2g-only Hamiltonian by integrating out all the degrees of

freedom other than Fe t2g and Mo t2g starting from a full DFT band structure and then

performing NMTO-downfolding calculation. Calculations were carried out both in the

spin-polarized and nonspinpolarized form. First of all, Fig. 5.7 illustrates the driving

mechanism of magnetism in this class of compounds [31]. The top panels show the on-site

energies of the real-space Hamiltonian defined in downfolded effective Fe-Mo basis for

SFMO and LFMO in a spin-polarized calculation. As is seen, the t2g levels of Mo appear

in between the exchange-split Fe d states. Upon switching on the hybridization between

Fe d and Mo t2g, states of same symmetry and spin interact. As a result, Mo t2g up-spin

states are pushed up in energy and Mo t2g down-spin states are pushed down in energy,

introducing a renormalized, negative spin splitting at the Mo site. The normalized spin

splitting at Mo site is estimated by massive downfolding procedure by keeping only Mo

t2g states active in the basis, as shown in the right half on the top panels in Fig. 5.7. We

note that this to be true for both SFMO and LFMO. This in turn, once again, reconfirms

the hybridization driven mechanism to be operative both in SFMO and LFMO, the only
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difference being in the carrier concentration. This is in contrast to Sr2FeWO6 where W

t2g levels are pushed above the exchange split Fe d levels. The increase in the number of

conduction electrons for LFMO compared to SFMO, is reflected in the spin splitting at

Mo site before switching of the hybridization, to be about three times larger in LFMO

(0.37 eV) compared to that of SFMO (0.13 eV). The bottom panels of Fig. 5.7 show the

plots of Wannier functions of the massively downfolded Mo t2g in the down-spin channel

which demonstrates the hybridization between Mo t2g and Fe t2g states.

Fe 3d 
levels

Mo−t2g 
levels

of hybridization
in presence 
states 
Renormalized Fe 3d 

levels
Mo−t2g 
levels

of hybridization
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Renormalized 
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Fig. 5.7: Top panels: Positioning of various energy levels as obtained by NMTO-downfolding calculation
before and after switching on the hybridization between the magnetic and nonmagnetic ions. Bottom
panels: Effective Mo t2g Wannier orbitals corresponding to massively downfolded NMTO Hamiltonian in
the down-spin channel. Shown are the orbital shapes (constant amplitude surfaces) with lobes of opposite
signs colored as blue (dark gray) and cyan (light gray). The central part of the Wannier orbitals are
shaped according to Mo t2g symmetry while the tails are shaped according to Fe t2g and O-p symmetries.
Significant amount of weights are seen in O and Fe site which reflects the strong hybridization between
Fe, Mn, and O. For LFMO, finite weights are seen also at La sites, occupying the hollows formed between
Mo-O and Fe-O bonds, which is of La 3z2 character.

Table 5.4 shows the hopping interactions between Fe and Mo, obtained in the basis

of Fe and Mo t2g Wannier functions constructed by NMTO-downfolding technique. The

numbers inside the bracket are that of LFMO while those outside are that of SFMO. The

examination of the hopping table reveals that the nearest-neighbor Fe-Mo hopping to be

strongest, as expected. The second-nearest-neighbor Mo-Mo hopping is half as strong

as the nearest-neighbor Fe-Mo hopping while the second-nearest-neighbor Fe-Fe hopping

is about one fifth of the nearest-neighbor Fe-Mo hopping. The out-of-plane hoppings
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Table 5.4: Hopping matrix elements in eV between Fe-t2g and Mo-t2g. Only the hopping matrix elements
of magnitude larger than 0.01 eV are listed. The onsite matrix elements are given by 0.005 (0.008) eV,
0.0 (0.0) eV, 0.0 (0.0) eV for Fe-xy, Fe-yz and Fe-xz respectively, and 1.018 (1.057) eV, 1.007 (1.053)
eV, 1.007 (1.053) eV for Mo-xy, Mo-yz and Mo-xz respectively. All numbers inside the bracket are for
LFMO and those outside are for SFMO. The energies for a given compound is measured with respect
to the lowest energy state. The small differences between numbers involving xy and that of yz and xz

reflect the tetragonality present in the systems.

Direction xy,xy yz,yz xz,xz

1NN (Fe-Mo)

[100] -0.26 (-0.26) -0.02 (-0.04) -0.26 (-0.26)

[010] -0.26 (-0.26) -0.26 (-0.26) -0.02 (-0.04)

[001] -0.02 (-0.04) -0.26 (-0.25) -0.26 (-0.25)

2 NN (Fe-Fe)

[110] -0.05 (-0.06) 0.01 (0.00) 0.01 (0.00)

[101] 0.00 (0.00) 0.01 (0.00) -0.04 (-0.06)

[011] 0.00 (0.00) -0.04 (-0.06) 0.01 (0.00)

2 NN (Mo-Mo)

[110] -0.11 (-0.12) 0.00 (0.01) 0.00 (0.01)

[101] 0.01 (0.01) 0.00 (0.01) -0.11 (-0.12)

[011] 0.01 (0.01) -0.11 (-0.12) 0.00 (0.01)

3NN (Fe-Mo) [111] 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)

4 NN (Fe-Fe)

[100] 0.01 (0.01) 0.01 (0.00) 0.01 (0.01)

[010] 0.01 (0.01) 0.01 (0.01) 0.01 (0.00)

[001] 0.01 (0.00) 0.01 (0.01) 0.01 (0.01)

4 NN (Mo-Mo)

[100] 0.01 (0.03) 0.01 (0.00) 0.01 (0.03)

[010] 0.01 (0.03) 0.01 (0.03) 0.01 (0.00)

[001] 0.01 (0.00) 0.01 (0.03) 0.01 (0.03)

5 NN (Fe-Mo)

[110] -0.01 (-0.01) 0.00 (0.01) 0.00 (0.00)

[101] 0.00 (0.01) 0.00 (0.00) -0.01 (-0.01)

[011] 0.00 (0.00) -0.01 (-0.01) 0.00 (0.01)
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which are of ddδ kind are order of magnitude smaller than the in-plane ddπ kind of

hopping while interorbital hoppings are found to be negligibly small (less than 0.01 eV).

This makes the hopping essentially two dimensional, as commented earlier. As is also

evident, by replacing Sr by La, the essential material specific parameters of the low-energy

Hamiltonian, as given in Eqn. 5.1 changes very little. This is shown pictorially in Fig. 5.7,

where it is found that the relative energy positions of the t2g ↓ levels of Fe and Mo change

very little in going from SFMO to LFMO. In the solution of low-energy Hamiltonians,

to be described in the next section, calculations are therefore carried out assuming the

hopping parameters corresponding to SFMO and varying the carrier concentration in a

rigid-band fashion. The charge-transfer energy between Fe t2g and Mo t2g has been found

to differ by about 5% which has been taken into account in these calculations.

5.3.4 Calculations of magnetic phase diagram and magnetic tran-

sition temperatures in terms of low-energy Hamiltonian

The hopping parameters and the on-site energies were taken out of DFT calculations,

as listed in Table 5.4. For convenience of calculation, we have neglected the small

tetragonality reflected in the parameters listed in Table 5.4. The dominant hopping

interaction which is between nearest-neighbor Fe and Mo is found to be on the order of

0.3 eV while the spin-exchange splitting at Fe site as shown in Fig. 5.7, is on order of the

3 eV, an order of magnitude larger than the dominant hopping interaction. This justifies

the assumption of J → ∞ limit as adopted in Eqn. 5.2. This makes the rank of the

Hamiltonian to be diagonalized as 9/2×N3 for a N×N×N lattice, because there are nine

degrees of freedom per Fe-Mo pair, consisting of three at Fe site and six at Mo site.

The energy difference between ferromagnetic configuration and G-type and A-type an-

tiferromagnetic configuration of Fe spins as a function of carrier concentration is plotted

in Fig. 5.8. The negative values of the energy differences indicate the stability of the fer-

romagnetic phase while the positive values indicate the stability of the antiferromagnetic

phase. The crossover happens for a value of conduction electrons equal to about ∼ 2.6,

corresponding to x=1.6, which agrees well with the results of eight formula unit supercell

calculations, given the assumption of infinite Hunds coupling at Fe site and the finite-size

effect. This agreement is nontrivial since the effective Hamiltoanian has only 12 spin

orbitals, and hence 12 bands, as compared to the 500 band calculation with eight formula

unit supercells. This in turn, validates the construction of low-energy model Hamiltonian

as given in Eqn. 5.2, in terms of correct identification of the essential contributing terms.

This gives us confidence in the constructed low-energy model Hamiltonian, which can

henceforth be used to calculate many other properties such as conductivity, susceptibil-

ity, magnetoresistance, including at finite temperature, which are not easily accessible

within DFT.
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Fig. 5.8: The energy differences between the FM and G-type AFM phase (solid line) and the FM and
A-type AFM phase (dashed line) plotted as a function of the number of conduction electrons, as obtained
by exact diagonalization of the low-energy Hamiltonian for a 8×8×8 lattice. Only the region outside the
hashed regions, from carrier concentration 1 to 3 is of relevance for Sr2−xLaxFeMoO6.

As an example, we have used the solutions of the lowenergy Hamiltonian to calculate

the magnetic transition temperatures by calculating the difference between the param-

agnetic phase and the relevant magnetic phases. The paramagnetic phase was simulated

as disordered localmoment calculations, where the calculations were carried out for sev-

eral (∼ 50) disordered configurations of Fe spin and were averaged to get the energy

corresponding to paramagnetic phase. We note that, such a calculation would have been

rendered extremely difficult within ab initio owing to the computational time involved us-

ing large supercells, and also averaging them over myriad configurations. Fig. 6.3 shows

the transition temperatures plotted as a function of carrier concentration. The ferromag-

netic transition temperature at carrier concentration of 1, which corresponds to SFMO

compound, is found to be 360 K in comparison to measured value of 410 K [12]. The fer-

romagnetic Tc is found to decrease upon increasing La concentration, and finally becomes

zero. Upon suppression of ferromagnetic Tc, the transition temperature of the antifer-

romagnetic phase, TN starts growing, hitting a maximum value for the end member,

LFMO.
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Fig. 5.9: The ferromagnetic Tc (solid line) and the antiferromagnetic transition temperature TN (dashed
line) plotted as a function of the number of conduction electrons, as obtained by exact diagonalization
of the low-energy Hamiltonian for a 8×8×8 lattice. As in Fig. 5.8, the region outside the hashed regions,
from carrier concentration 1 to 3 is of relevance for Sr2xLaxFeMoO6.

5.4 Summary and outlook

Using the combination of first-principles DFT calculations and exact diagonalization cal-

culations of low-energy Hamiltonians, we showed that the La-doped Sr2FeMoO6 com-

pounds become progressively more unstable toward ferromagnetism as the La concentra-

tion is increased. For the La-rich members of Sr2−xLaxFeMoO6 series with x 1.6, the

ground state becomes antiferromagnetic. This antiferromagnetic phase is found to be

governed by the kinetic-energy driven mechanism as operative in SFMO and achieved

by change in carrier concentration. In contrast to the superexchange-driven antiferro-

magnetic phase found in case of double perovskite such as Sr2FeWO6 [17], this antifer-

romagnetic phase presumably is metallic. Our DFT calculations found antiferromagnetic

solutions with finite density of states at Fermi energy. The preliminary calculations of

the matrix elements of the current operator also turned out to be nonzero. This will be

taken up with more rigor in near future.

It is interesting to compare our results with dynamical mean-field theory (DMFT)

calculations done by Chattopadhyay and Millis [15], using a one-band model Hamiltonian.

This was, however, a single-site calculation, and hence there was no possibility of capturing

an antiferromagnetic phase. Their Tc vs N plot for the ferromagnetic phase, however, was

very similar to ours, as shown in Fig. 6.3, in the sense that the Tc first increased, and then
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decreased with increasing filling, finally, becoming 0 at a filling close to 3. The additional

and the most important finding of our study is that our calculations also demonstrate the

cause of the vanishing Tc, namely, the emergence of the AFM phase.

97



References

[1] K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature (Lon-

don) 395, 677 (1998).

[2] B. Garcia Landa, C. Ritter, M. R. Ibarra, J. Blasco, P. A. Algarabel, R. Mahendiran,

and J. Garca, Solid State Commun. 110, 435 (1999).

[3] B. Martinez, J. Navarro, L. Balcells, and J. Fontcuberta, J. Phys.: Condens. Matter

12, 10515 (2000).

[4] D. D. Sarma, S. Ray, K. Tanaka, M. Kobayashi, A. Fujimori, P. Sanyal, H. R.

Krishnamurthy, and C. Dasgupta, Phys. Rev. Lett. 98, 157205 (2007).

[5] C. L. Yuan, S. G. Wang, W. H. Song, T. Yu, J. M. Dai, S. L. Ye, and Y. P. Sun,

Appl. Phys. Lett. 75, 3853 (1999).

[6] D. D. Sarma, E. V. Sampathkumaran, R. Sugata, R. Nagarajan, S. Majumdar, A.

Kumar, G. Nalini, and T. N. Gururow, Solid State Commun. 114, 465 (2000).

[7] Cz. Kapusta, P. C. Riedi, D. Zajac, M. Sikora, J. M. De Teresa, L. Morellon, and M.

R. Ibarra, J. Magn. Magn. Mater. 242-245, 701 (2002).

[8] K. Kuepper, M. Kadiroglu, A. V. Postnikov, K. C. Prince, M. Matteucci, V. R.

Galakhov, H. Hesse, G. Borstel, and M. Neumann, J. Phys.: Condens. Matter 17,

4309 (2005).

[9] Y. Tomioka, T. Okuda, Y. Okimoto, R. Kumai, K.-I. Kobayashi, and Y. Tokura,

Phys. Rev. B 61, 422 (2000).

[10] Dinesh Topwal, D. D. Sarma, H. Kato, Y. Tokura, and M. Avignon, Phys. Rev. B

73, 094419 (2006).

[11] D. D. Sarma, P. Mahadevan, T. Saha-Dasgupta, S. Ray, and A. Kumar, Phys. Rev.

Lett. 85, 2549 (2000).

[12] Z. Szotek, W. M. Temmerman, A. Svane, L. Petit, and H. Winter, Phys. Rev. B 68,

104411 (2003).

98



Section 5.4

[13] V. Kanchana, G. Vaitheeswaran, M. Alouani, and A. Delin, Phys. Rev. B 75,

220404(R) (2007).

[14] I. V. Solovyev, Phys. Rev. B 65, 144446 (2002).

[15] A. Chattopadhyay and A. J. Millis, Phys. Rev. B 64, 024424 (2001).

[16] O. Navarro, E. Carvajal, B. Aguilar, and M. Avignon, Physica B 384, 110 (2006).

[17] J. Kanamori and K. Terakura, J. Phys. Soc. Jpn. 70, 1433 (2001).

[18] E. Carvajal, O. Navarro, R. Allub, M. Avignon, and B. Alascio, Eur. Phys. J. B 48,

179 (2005).

[19] L. Brey and M. J. Caldern, S. Das Sarma, and F. Guinea, Phys. Rev. B 74, 094429

(2006).

[20] J. L. Alonso, L. A. Fernandez, F. Guinea, F. Lesmes, and V. Martin-Mayor, Phys.

Rev. B 67, 214423 (2003).

[21] P. Sanyal and P. Majumdar, Phys. Rev. B 80, 054411 (2009).

[22] Z. Fang, K. Terakura, and J. Kanamori, Phys. Rev. B 63, 180407(R) (2001).

[23] J. van den Brink, G. Khaliullin, and D. Khomskii, Phys. Rev. Lett. 83, 5118 (1999).

[24] A. Kahoul, A. Azizi, S. Colis, D. Stoeffler, R. Moubah, G. Schmerber, C. Leuvrey,

and A. Dinia, J. Appl. Phys. 104, 123903 (2008).

[25] T. Saitoh, M. Nakatake, H. Nakajima, O. Morimoto, A. Kakizaki, Sh. Xu, Y. Morit-

omo, N. Hamada, and Y. Aiura, J. Electron Spectrosc. Relat. Phenom. 144-147,

601 (2005).

[26] J. Navarro, C. Frontera, Ll. Balcells, B. Martnez, and J. Fontcuberta, Phys. Rev. B

64, 092411 (2001).

[27] C. Frontera, D. Rubi, J. Navarro, J. L. Garcia-Munoz, J. Fontcuberta, and C. Ritter,

Phys. Rev. B 68, 012412 (2003).

[28] Carlos Frontera (private communication).

[29] J. Navarro, J. Fontcuberta, M. Izquierdo, J. Avila, and M. C. Asensio, Phys. Rev. B

70, 054423 (2004).

[30] Z. Zhang and S. Satpathy, Phys. Rev. B 44, 13319 (1991).

[31] T. Saha-Dasgupta, Molly De Raychaudhury, and D. D. Sarma, Phys. Rev. Lett. 96,

087205 (2006).

99



Chapter 6

Study of magnetism and magneto-optic

effect in Cr-based double perovskites

Content of this chapter has been published in: Hena Das, Prabuddha

Sanyal, T. Saha-Dasgupta, D.D. Sarma, Phys. Rev. B, Hena Das, M.

De-Raychaudhury, T. Saha-Dasgupta, Appl. Phys. Lett. 92, 201912

(2008).

6.1 Introduction

Cr-based double perovskite series, namely Sr2CrB′O6 (B′ = W/Re/Os), the family with

spectacularly high Tc, the measured Tc shows a rapid increase as one moves from Sr2CrWO6

(SCWO) [1] with Tc ≈ 450 K to Sr2CrReO6 (SCRO) [2] with Tc ≈ 620 K to Sr2CrOsO6

(SCOO) [3] with Tc ≈ 725 K. The B′ ion which is in nominal 5+ valence state corresponds

to 5d1, 5d2, 5d3 configuration of W, Re and Os respectively. Taking the number of valence

electrons as sole consideration, the situation of SCWO, SCRO, SCOO are comparable to

that of Sr2FeMoO6 (SFMO), SrLaFeMoO6 and La2FeMoO6 (LFMO) respectively. How-

ever, the hybridization driven (HD) mechanism of magnetism used in the context of La

doped SFMO, predicts decrease rather than the increase [4]. The Cr-B′ (B′ = W, Re,

Os) series bear two fundamental differences compared to La-SFMO series: (1) the B′ ions

in Cr-B′ being 5d transition metals exhibit significant spin-orbit (SO) coupling, (2) the

three different chemical elements, namely W, Re and Os are involved in Cr-B′ series while

for La-SFMO series the increased electron count is achieved without any changes in the

B-B′ sublattice. In the first part of the present chapter, we present the study unraveling

the dominant factor that causes the fundamental differences in magnetic properties of

La-SFMO series and Cr-B′ like series, employing combination of DFT tools and the exact

diagonalization of model Hamiltonian.

The presence of relatively large SO coupling make these materials suitable for magneto-

optic applications with large signal. The magneto-optical Kerr effect (MOKE) in ferro-

magnets is an important phenomenon utilized for magneto-optical (MO) recording and

optical communication. Search is on for suitable materials that exhibit large MOKE sig-

nals at high temperature for designing of improved devices. SCWO and SCRO with high

Tc and B′ site bearing substantial SO coupling are therefore potential candidates that
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may satisfy the above criteria and can be used as functional MO disks. Similarly, SCOO,

an insulator, may exhibit large Faraday signals. Unfortunately, there has not been any

study of MO properties in this interesting class of materials with potential technological

applicability. There have been reports of optical measurements in SCRO and SCWO,

although they lack data in the far infrared region [6, 7]. Therefore we present the MO

properties of Sr2CrB′O6 series from a theoretical point of view in the second part of the

chapter. To do so we have used the eigenvalues and wave functions generated from the full

potential band structure calculations with SO included. We have calculated the various

optical spectra, such as reflectivity and optical conductivity, and MO spectra, such as

Polar Kerr and Faraday spectra.

6.2 Computational details

To find out the Tc trend in the Cr-B′ series we have used density functional theory (DFT)

based calculations together with exact diagonalization of Cr-B′ model Hamiltonian con-

structed in a first-principles derived Wannier function basis. The first-principles DFT

calculations were carried out using the plane wave pseudopotential method implemented

within Vienna Ab-initio Simulation Package(VASP). The exchange-correlation function-

als were approximated by generalized gradient approximation (GGA) and GGA+U. SO

coupling has been included in the calculations in scalar relativistic form as a perturbation

to the original Hamiltonian. We have used projected augmented wave (PAW) potentials

and the kinetic energy cut-of for expansion of wavefunctions used was 450 eV. Reciprocal

space integrations have been carried out with a k-space mesh of 6×6×6. For extraction of

a few-band, tight-binding Hamiltonian out of full DFT calculation which has been used

as input to multi-orbital, low-energy Hamiltonian based calculations, we have carried out

muffin-tin orbital (MTO) based NMTO-downfolding calculations. The constructed multi-

orbital, spin-fermion Hamiltonian defined in the first-principles derived Wannier function

basis has been solved by means of real space based exact diagonalization technique.

In order to investigate MO properties the band structure calculations have been carried

out with no shape approximation to the potential and charge density. The basis has been

chosen to be linearized augmented plane wave (LAPW) as implemented in the Wien2k

code. Both local density approximation (LDA) and generalized gradient approximation

(GGA) have been used as exchange-correlation functionals. For the number of plane

waves, the criterion used was muffin-tin radius multiplied by Kmax (for the plane wave)

yielding a value of 7.0. The k points used in the irreducible part of Brillouin zone was

256 (480 for optical calculations) and has been checked for convergence.
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6.3 Investigation of the increasing trend in Tc

6.3.1 Examination of basic electronic structure
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Fig. 6.1: Left Panels: GGA DOS projected onto Cr d (black solid lines), B′ d (Red/Grey solid lines) and
O p (shaded area). Zero of the energy is set at EF . The numbers within the boxes indicate the Cr t2g

contribution in the bands crossing EF , with respect to that of B′. Right Panel: Calculated net magnetic
moment and magnetic moments at Cr, B′ and O sites. The numbers within the bracket denote the result
of GGA+SO calculations, the first entry being the spin moment and the second entry being the orbital
moment. From top to bottom, the plots correspond to SCWO, SCRO and SCOO respectively.

In order to unravel the origin of magnetism in Sr2CrB′O6 series, let us first critically

examine the electronic density of states (DOS) of these compounds. Left panel of Fig. 6.1

shows the DOS, as obtained in spin-polarized DFT calculations within GGA. The states

close to Fermi level (EF ) are dominated by Cr and B′ d states hybridized with O p states,

while the O p dominated states separated from Cr and B′ d dominated states occupy the

energy range far below EF and Sr s and d dominated state remain far above EF . The d

states of Cr and the B′ ions are exchange split as well as crystal field split. The empty

B′ t2g states in the up-spin channel appear in between the crystal field split Cr t2g and eg

states, gaped from EF while the B′ states in the down spin channel hybridized with Cr

t2g states, either cross the Fermi level as in the case of W and Re compounds, or remain

completely occupied, as in case of the Os compound. It is rather intriguing to notice

that the hybridization between Cr t2g and B′ t2g in the down spin channel, progressively

gets weakened in moving from W to Re to Os compound. This may be appreciated by
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considering the Cr contribution measured with respect to B′ contribution for the states in

the down spin channel close to EF . For W, Re and Os compounds, it is found to be 66%,

16 % and 5% respectively. This is caused by the gradual moving down of the B ′ energy

level, in moving from left to right of the periodic table across the same row (W → Re

→ Os), reflecting an increase in the ionic potential experienced by the 5d electrons with

an increase in nuclear charge. As discussed later, the hopping interaction connecting Cr

and B′ t2g states on the other hand remains similar across the series. Analyzing the DFT

calculated magnetic moments, presented in the right panel of Fig. 6.1, we find the second

interesting observation that the magnetic moment per electron at B′ site, defined as m/d,

where m is the calculated moment and d is the valence count at B′, keeps growing from

W to Re to Os. The increase in m/d becomes even more evident taking into account the

magnetic moment at O site, which is small and point to Cr moment for SCWO, small

(large) and point to Re (Os) moment for SCRO (SCOO). This prompts us to conclude that

there is a growing intrinsic moment that develops at B′ site following the dehybridization

effect between Cr and B′.

6.3.2 NMTO-downfolding calculations

Fig. 6.2: The energy level diagram (upper panel) and massively downfolded Wannier functions (lower
panels) for Sr2CrB′O6 series. For Wannier function plots, constant value surfaces have been plotted with
two oppositely signed lobes colored differently. From left to right in lower panel, the plots correspond to
SCWO, SCRO and SCOO respectively. The numbers in the energy level diagram are in unit of eV.

In order to further analyze the findings of the electronic structure calculations, we
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have carried out NMTO downfolding calculations. As a first step we downfolded O p, Sr

as well as Cr and B′ eg degrees of freedom. This defines an effective basis consisting of Cr

t2g and B′ t2g states. In the second step, we applied massive downfolding, keeping only

B′ t2g degrees of freedom active and downfolding all the rest including Cr t2g degrees of

freedom. On site matrix elements of the real space Hamiltonian defined in the Cr t2g-B
′ t2g

basis and the massively downfolded basis give the energy level positions before and after

switching on the hybridization between Cr and B′ states, respectively. Fig. 6.2 summarizes

the results for W, Re and Os compounds. The energy levels in the left half of each top

panel depict the energy level positions in absence of hybridization between Cr t2g and

B′ t2g states while those in the right half of each top panel depict the normalized energy

levels after the hybridization is switched on via the massive downfolding procedure. The

lower panels exhibit the plots of the one of the t2g (xy) Wannier functions corresponding

to massively downfolded Hamiltonian in the down spin channel. Examination of Fig. 6.2

brings out two aspects: Firstly, the progressive dehybridization effect, as discussed in the

context of DOS plots, is evident in the plots of Wannier functions. The central parts

of the Wannier functions are shaped according to B′ xy symmetry and the tails of the

Wannier functions sitting at neighboring sites are shaped according to O p and Cr t2g

symmetry. The tails reflecting the hybridization between the Cr t2g and B′ t2g-O weaken

as one moves from W to Re to Os compound. As a consequence, the ratio of renormalized

spin splitting to that of the bare splitting at B′ site reduces drastically from W (14.5) to

Re (3.3) to Os (2.2). Secondly, considering the level splitting at B′ site before switching

on the hybridization, we find while the splitting at W is negligibly small confirming the

nonmagnetic character of the B′ site, those for Re and Os are found to be ≈ 0.31 eV

and ≈ 0.53 eV, respectively. These values are significantly larger compared to what one

would have expected considering d2 valence in Re and d3 valence in Os compared to d1

valence in case of W with 0.06 eV splitting, which would have given rise to splittings of

0.12 eV and 0.18 eV respectively. This confirms the presence of a growing intrinsic, local

moment at B′ site as one moves from W to Re to Os, driven by the dehybridization effect.

The magnetism in Cr-B′ series, therefore, needs to be understood as an interplay of two

mechanisms: HD mechanism as operative in SFMO which causes renormalized, negative

spin splitting within B′ states that appear in between the exchange split Cr t2g states,

and the superexchange (SE) between the moment at Cr site and the intrinsic moment

at B′ site, which would align the moments at Cr and B′ sites antiparallely. For W, the

intrinsic moment being negligible, the magnetism is entirely driven by HD mechanism,

while for the other extreme of Os, the hybridization effect is weak, SE having a rather

large contribution. The presence of such intrinsic moment at 5d site is counterintuitive at

a first glance. Comparing the situation, with the double perovskite Sr2ScReO6, for which

the magnetism has been recently investigated [8], Re was found to possess a rather small

intrinsic moment of size 0.013 µB. Our electronic structure calculations carried out for
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Sr2ScReO6 find also a similarly small moment (0.03 µB). The unusual localized aspect of

Re or Os, in case of Cr based compounds therefore arises due to the relative positioning of

the Cr and B′ energy levels, which narrows down the width of the B′ states substantially

in the up spin channel. The development of the intrinsic moment is thus helped by the

delicate energy level structure responsible for the HD mechanism and would not have

been present otherwise.

6.3.3 Total energy calculations

The calculations discussed so far, do not include Spin orbit correlation (SOC), which

may be important. The numbers within the bracket in right panel of Fig. 6.1 show the

individual spin and orbital moments as well as net moments as obtained in GGA+SO

calculations. As expected, the orbital moments are large at B′ site. Interestingly, we

find while the net moment was zero for SCOO without SOC, it is the consideration of

SOC that gives rise to a non-zero moment, due to the uncompensated orbital moment

at B′ site. Whether SOC has any influence on the trend within the Tc’s, therefore needs

to be explored. Interplay of two driving mechanisms in W-Re-Os series, however, makes

it difficult to extract the magnetic exchanges as energy difference between two specific

magnetic configurations. The presence of finite, intrinsic moment at B′ site, as is the case

for Re and Os compounds, makes the moment at B′ site frustrated in an antiferromagnetic

(AFM) configuration of Cr spins. The finite presence of HD mechanism, on the other

hand, disfavors stabilization of magnetic configurations with majority of B spins aligned

parallely to that of the moment at B′ site. Admitting these difficulties, we carried out

total energy calculations of the two possible spin configurations, one FM arrangement

and another A-type AFM arrangement of Cr spins, with Cr spins between two adjacent

planes are antiferromagnetically coupled, and are ferromagnetically coupled in plane. For

the AFM calculations, the moment at B′ site was found to be antiparallely (parallely)

aligned to the spins of in-plane (out-of-plane) Cr sites which are four (two) in number.

As expected, the energy differences between FM and AFM configurations are found to

be positive for all cases proving FM arrangement of Cr spins to be the stable phase.

The values of the energy difference is found to increase from W to Re system (from 0.23

eV/formula unit to 0.25 eV/formula unit), and then decrease from Re to Os system (from

0.25 eV/formula unit to 0.24 eV/formula unit). Introduction of SO interaction though

changes the individual energy differences by about 0.03 eV, the trend remains unaltered.

This indicates that although the presence of substantial SOC at B′ site is important for

producing the large magneto-optical signals, it plays little role in setting up the trend in

Tc. In order to examine the role of missing correlation effect in GGA, we have also carried

out LDA+U calculations with a choice of U value of 3 eV at Cr site and 0.8 eV at B′ site.

Application of larger U at Cr site and relatively smaller one at B′ sites, as expected from

the relative band-widths, were found to preserve the general conclusions intact with more
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localized character of d states at B′ site, as expected.

6.3.4 Exact diagonalization study of model Hamiltonian

In view of the difficulty in stabilizing the appropriate excited state magnetic configuration,

the stability of the FM arrangements of Cr spins may be measured as the energy difference

between the FM spin configuration and the paramagnetic (PM) phase. The description of

the PM phase needs consideration of different disordered spin configurations and averaging

over a large number of them, which is almost impossible within the DFT framework. Such

calculations are much easier to handle within a model Hamiltonian description. The model

Hamiltonian, describing the interplay of the HD and SE mechanism may be written as,

H = εCr
∑
i∈B

f †iσαfiσα + εB′

∑
i∈B′

m†iσαmiσα

−tCB′

∑
<ij>σ,α

f †iσ,αmjσ,α − tB′B′

∑
<ij>σ,α

m†iσ,αmjσ,α

−tCC
∑

<ij>σ,α

f †iσ,αfjσ,α + J
∑
i∈Cr

Si · f †iα~σαβfiβ

+J2

∑
i∈Cr,j∈B

Si · sj

where the f ’s and m’s refer to the Cr t2g and B′ t2g degrees of freedoms. tCB′ , tB′B′ , tCC

represent the nearest neighbor Cr-B′, second nearest neighbor B′-B′ and Cr-Cr hoppings

respectively. σ is the spin index and α is the orbital index that spans the t2g manifold. The

difference between the ionic levels, ∆ = εCr − εB′ , defines the on-site energy difference

between Cr t2g and B′ t2g levels. sj is the intrinsic moment at the B′ site. The first,

six terms of the Hamiltonian, represent the HD mechanism, which consist of a large

core spin at the Cr site (Si) and the coupling between the core spin and the itinerant

electron delocalized over the Cr-B′ network. Variants of this part has been considered

by several authors [9, 10, 11] in the context of SFMO. The last term represents the SE

mechanism, that consists of coupling between Cr spin and the intrinsic moment at B′ site.

The parameters of the model Hamiltonian are extracted out of DFT calculations through

NMTO downfolding technique of constructing the real space Hamiltonian in the basis of

effective Cr t2g and B′ t2g degrees of freedom. tCB′ , tB′B′ and tCC hoppings are found

to -0.35 eV, -0.12 eV and -0.08 eV respectively, with little variation within the W-Re-Os

series. ∆-s show a varying trend within the W-Re-Os series (∆W = -0.66 eV, ∆Re =

0.03 eV, ∆Os = 0.26 eV). The parameters involving J and J2 were obtained from the

spin-splitting at Cr site and the extra splitting observed at B
′

site as compared to that

expected from the electron filling effect and the splitting for W compound.

The constructed model was then solved using exact diagonalization on a lattice of

dimension 8 × 8 × 8. Calculations have been carried out as well for lattices of size 4 × 4
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Fig. 6.3: PM - FM energy differences plotted as a function of valence electron count, as obtained in exact
diagonalization calculation. The diamond (square) symbols connected by dashed (solid) line correspond
to calculations corresponding to Hamiltonian, without (with) J2 term.

× 4 and 6 × 6 × 6. The trend is found to be the same as presented for 8 × 8 × 8. Exact

diagonalization was first carried out considering the B′ site to be totally nonmagnetic, i.e.

setting the last term to zero, which boils down to the same underlying model Hamiltonian

as that of SFMO. The energy difference between the PM and FM is found to decrease with

increasing number of valence electron, as shown by diamond symbols in Fig. 6.3. This is

exactly the similar trend as found in a recent calculation on La doped SFMO [4], as well

as in Ref.[5] with FM getting destabilized with increase of valence electrons. This trend of

suppression of Tc upon increasing valence electron count is further amplified due to change

in ∆ within the Cr-B′ series. This variation in ∆ in the present series is in contrast to

the prescription given in Ref.[5] to achieve high Tc. Upon reaching valence electron count

equal to 3 which corresponds to Os compound, FM becomes totally unstable, reflected in

negative sign of the energy difference. We note a rather rapid decrease in moving from

N=2 case to N=3 case. This may reflect the special situation of Os compound, with Cr

t32g-B
′ t32g configuration, an ideal super-exchange situation with insulating solution, that

adds on to the general trend. The situation gets dramatically changed upon inclusion

of the growing localized magnetic nature of the B′ site, as shown by square symbols in

Fig. 6.3. Considering J2 values, as obtained in GGA calculations, we find that PM and

FM energy difference, recovers the correct trend in moving from W to Re to Os as has

been observed experimentally. Mapping the PM and FM energy difference to the mean

field Tc, one obtains values 870 K, 1160 K and 1450 K for the W, Re and Os compounds

respectively. Although the values are overestimated compared to experimental values,

presumably due to the finite size effect of exact diagonalization calculation and the mean

field formula, the trend is very well reproduced with TRe
c /TW

c = 1.33 and TOs
c /TRe

c =

1.25, compared to experimental estimates of 1.38 and 1.17 respectively [1, 2, 3].
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6.4 Investigation of magneto optical properties
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Fig. 6.4: The polar Kerr effect

Magnetic optics (MO) deal with phenomena arising as a result of interaction between

light and matter when the latter has non zero magnetization. For example, when a plane

polarized light reflects from a metal surface or transmits through a thin film which has non

zero magnetization becomes elliptically polarized with a rotation of the plane of polariza-

tion. This effect due to reflection is called MO kerr effect and that due to transmission

is called MO Faraday effect. The Kerr effect exists in three types of geometries: polar,

longitudinal and transverse. Among these, the polar Kerr effect, where the direction of

the magnetization M is oriented perpendicular to the reflective surface and parallel to

the plane of incidence (see Fig. 6.4), is by far the largest one and therefore this geometry

is the most interesting one in connection with the technological application. Hence, we

performed our theoretical investigations for the polar Kerr effect only.

6.4.1 Microscopic theory of magneto optical effect

A plane polarized light can be resolved into two oppositely polarized circular polarization:

+

Fig. 6.5: Right and left-handed circularly polarized component of a plane polarized light beam.
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When they interact with a magnetic medium the refractive indices for right and left-

handed circular polarization become different. For polar Kerr magnetization geometry,

the Kerr rotation (θK) and ellipticity (ηK) in terms of the complex refractive indices (N±)

for two circular components of opposite (±) helicity is given by [14],

1 + tan(ηK)

1− tan(ηK)
e2iθK =

1 +N+

1−N−
1−N−
1 +N+

(6.1)

The Faraday rotation (θF ) and ellipticity (ηF ) can be expressed as [15],

θF + iηF =
ωd

2c
(N+ −N−) (6.2)

where c is the velocity of light in vacuum, and d is the thickness of the film. ω is the

frequency of the incoming/outgoing electromagnetic wave.

At optical frequencies the propagation of electromagnetic waves in magnetic materials

is described by the dielectric tensor ε, or equivalently, with the optical conductivity tensor

σ. With the magnetic moment in the z direction, the form of the optical conductivity

tensor for cubic or tetragonal symmetry is,

σ = σ(1) + iσ(2) =

 σxx σxy 0

σyx σyy 0

0 0 σzz

 (6.3)

where σxx = σyy and σxy = −σyx. Note that even in the cubic case, σzz is not strictly

equal to σxx. In terms of conductivities, the refractive indices are:

N2
± = 1 +

4πi

ω
(σxx ± iσxy) (6.4)

Using this expression for N± for small Kerr angles Eqn. 6.1 can be simplified to

θK + iηK ≈
−σxy

σxx(1 +
4πi

ω
σxx)1/2

(6.5)

Similarly for small Faraday angle Eqn. 6.4 transforms Eqn. 6.2 in to a simplified form,

θF + iηF ≈
2πd

c

σxy

(1 +
4πi

ω
σxx)1/2

(6.6)

For a metal, the optical conductivity is sum of two contributions:(1)interband, (2)in-

traband. To calculate the interband contribution we used the dipole approximation, i.e.,

the momentum transfer from the initial state to the final state was neglected. The in-

terband contribution to the absorptive part of the optical conductivity σ
(abs)
αβ (ω), as a

function of frequency ω of the incoming/outgoing electromagnetic wave, in the random

phase approximation is given by [16],

109



Investigation of magneto optical properties

σ
(abs)
αβ (ω) =

Ωe2

4π2}m2ω

∑
nn′

∫
d3k〈kn|pα|kn′〉

× 〈kn′|pβ|kn〉fkn(1− fkn′)δ(εkn′ − εkn − }ω) (6.7)

We considered the transitions from occupied to unoccupied states only. e and m

are the charge and mass of the electron, Ω is the volume of the unit cell, εkn′ and εkn

are the eigenvalues of final state |kn′〉 (unoccupied) and initial state |kn〉 (occupied)

at kth point in the Brillouin zone. 〈kn|pα|kn′〉 is the dipole matrix element with pα

being the momentum operator in the αth direction. fkn is the Fermi-distribution function

ensuring that only transitions from occupied to unoccupied states are counted. Note that

σ
(abs)
αα (ω) = Re(σαα(ω)) (i.e. the real part), whereas σ

(abs)
αβ (ω) = Im(σαβ(ω)) (i.e. the

imaginary part).

The intraband contribution to the diagonal components of the conductivity is normally

described by the Drude formula [17],

σD(ω) =
ω2
P

4π[(1/τ)− iω]
(6.8)

The relaxation time τ , characterizing the scattering of charge carriers, is dependent

on the amount of vacancies and other defects, and will therefore vary from sample to

sample. The unscreened plasma frequency ωP depends on the concentration of the charge

carriers. We calculated the unscreened plasma frequency by integrating over the Fermi

surface using the relation,

ω2
Pαα =

8πe2

Ω

∑
〈knξ|pα|knξ〉〈knξ|pα|knξ〉δ(εknξ − εF ) (6.9)

where εF is the Fermi energy and ξ is the spin. The dielectric tensor εαβ is related to

the optical conductivity tensor σαβ through the equation,

εαβ(ω) = δαβ +
4πi

ω
σαβ(ω) (6.10)

The reflectivity can be expressed as,

R(ω) =

∣∣∣∣∣
√
εαα(ω)− 1√
εαα(ω) + 1

∣∣∣∣∣
2

(6.11)

6.4.2 Results and discussion

The basic electronic structure of this series in connection with GGA DOS has been dis-

cussed already. Two additional points to be noted:
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• Inclusion of SO coupling mixes different spin channels which induces states in the

gap around EF in the majority spin channel in case of Sr2CrReO6, sufficient enough

to nearly close the gap, making it an almost half-metallic situation as pointed out

in Ref.[18].

• The O-p dominated states separated from Cr and B′-d dominated states appear in

the energy range between -8 and -3 eV or so with a gap between O-p dominated

states and B/B′-t2g states which diminishes as one progresses from W to Re and

finally vanishes for Os due to progressive shifting of B′ level with respect to O-p

level.

Fig. 6.6: Left panel: Density of states of Sr2CrB′O6 system (B′=W,Re,Os) computed within the frame-
work of GGA including SO coupling. Black and cyan lines and shaded brown area indicate partial density
of states corresponding to Cr-d, B′-d, and O-p. Arrows indicate various possible optical transitions. Right
panel: Calculated reflectivity spectra for Sr2CrB′O6 series.

The left panel of Fig. 6.6 shows the various possible optical transitions with the low

energy transitions being dominated by d-d transitions which can happen due to finite

hybridization with O-p and the relatively high energy transition being contributed by the

d-p transitions, in agreement with the experimental findings. The right panel of Fig. 6.6

shows the computed reflectivity for all the three compounds. The computed reflectivity

spectra in Sr2CrReO6 with the Drude component calculated from bare plasma frequency,

as given in band-structure calculation, show differences when compared to the available
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experimental reflectivity spectrum as reported by Kato et.al. [19] In particular, the low

energy behavior of the measured data indicates the system to be a bad metal which

presumably may have been caused by the nature of the sample.

Fig. 6.7: Left panel: Absorptive and dispersive parts of the calculated diagonal optical conductivity of
Sr2CrB′O6. Right panel: Calculated polar Kerr rotation spectra for Sr2CrB′O6. The inset shows the
Faraday spectrum in unit of 106 deg/cm for insulating Sr2CrOsO6.

Fig. 6.7 shows the computed diagonal conductivity which follows the corresponding

reflectivity spectra and the Kerr and Faraday rotation for the series. All interband transi-

tions occurring at low energies are suppressed by the correction to the optical conductivity

due to the Drude component for Sr2CrWO6 and Sr2CrReO6. The d-d interband transition

marked in the left panel of Fig. 6.6 gives rise to peak in the real part of the optical spectra

observed in the range of 1.52.1 eV. The peak gets bifurcated for Sr2CrOsO6 due to the

combined effect of a larger spin splitting at B′ site and enhanced hybridization from O-p

as compared to Sr2CrReO6 and Sr2CrWO6. The change of hybridization is caused by the

change in the charge transfer energy differences between B′-d and O-p. The spectra for

Sr2CrWO6 and Sr2CrReO6 show a dip in the range of 34 eV due to the nonavailability

of states within that range which gets filled up in Sr2CrOsO6 due to the closure of gap

between O-p dominated states and B/B′-t2g caused by the enhanced d-p hybridization

effect in case of Sr2CrOsO6 as stated above. In presence of finite off-diagonal conduc-
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tivity, large MO signals are expected to occur whenever diagonal conductivity reaches a

small value prior to an absorbance due to interband transitions. In case of Sr2CrWO6 and

Sr2CrReO6, two such possibilities can arise, one at plasma edge and another at energy

≈ 3 eV, where the dip in diagonal conductivity is observed. Computed rotations show

large values of -2.45◦ and -1.25◦ in case of Sr2CrWO6 and -0.72◦ and -2.10◦ in case of

Sr2CrReO6. Sr2CrOsO6, which does not have the plasma edge effect and exhibits the

closure of the dip in the optical conductivity spectrum showing two small resonances at

1.2 and 2.7 eV. Interestingly, Sr2CrOsO6 shows an optical gap of about 0.6 eV, and in

this regime, light is mostly transmitted with a moderate value of reflectivity. At about 1

eV, it shows a Faraday rotation of about -0.25×106 deg/cm, which is of the same order as

in Eu monochalcogenides [20, 21]. It is worth mentioning here that Tc in EuO and EuS

are 69 and 16 K, respectively, while it is 725 K in case of Sr2CrOsO6.

6.5 Summary and outlook

we have studied the counter-intuitive Tc trend in Cr based double perovskites, Sr2CrB′O6

(B′=W/Re/Os). Analysis of the electronic and magnetic properties shows that the pro-

gressive enhancement of the Tc across the 5d series should be understood as the interplay

of two driving mechanisms: HD mechanism responsible for the negative spin splitting at

B′ site as in SFMO, and SE mechanism. The HD mechanism gets weaker as one moves

along the series from W to Re to Os, due to the increased energy level separation of B′

from Cr. SE, on the other hand, gets stronger in moving from SCWO to SCRO to SCOO

due to the presence of growing intrinsic moment at B′ site, following the dehybridization

effect. The observation of uncompensated moment in SCOO arises due to the presence of

SO. SCOO, in that sense, should be thought as a ferrimagnet rather than a ferromagnet.

With this, we demystify the puzzling Tc trend in Cr-B′ double perovskite series.

Additionally we showed a large Kerr rotation of about 2◦-2.5◦ in SCWO and SCRO

in the visible light range that score over Sr2FeMoO6 [22] in terms of applicability for

industrial use as read heads or optical data storage devices. Moderately large Faraday

signals found in Sr2CrOsO6 makes it ideal for application in optical isolators as Faraday

rotators. We hope that our study will stimulate experimental activity in this front. A

crucial issue in this context is the control of the antisite disorder in terms of preparation of

high quality ordered samples. Antisite disorders are known to alter the electronic structure

of these materials substantially and are expected to change the value of the computed

rotation. The reported antisite disorder of SCWO and SCRO are about 23% [23] and 15%

[24], respectively. To get the desired effect, it is therefore essential to synthesize improved

samples with reduced antisite disorder.
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Chapter 7

Electronic Structure, phonons and dielectric

anomaly and chemical origin of the

Magneto-electro-structural coupling in

ferromagnetic insulating double-perovskite

La2NiMnO6 (LNMO)

Content of this chapter has been published in: Hena Das, U. V. Wagh-

mare, T. Saha-Dasgupta and D. D. Sarma, Phys. Rev. Lett. 100,

186402 (2008); Hena Das, U. V. Waghmare, T. Saha-Dasgupta and D.

D. Sarma, Phys. Rev. B 79, 144403 (2009).

7.1 Introduction

Ferromagnetic semiconductors and insulators are rare and mostly exhibit magnetic tran-

sition at very low temperatures, e.g., EuS (Curie temperature, Tc = 16 K) [1], EuO (Tc =

77 K) [2], CdCr2Se4 (Tc = 130 K) [3], BiMnO3 (Tc = 100 K) [4], SeCuO3 (Tc = 25 K) [5],

which precludes their use in devices. Double perovskite La2NiMnO6 (LNMO) offers an

interesting case which is a ferromagnetic semiconductor with a Curie temperature close to

room temperature [6]-[10]. Magnetic susceptibility measurements show a transition at a

value of ∼ 280 K indicating the onset of ferromagnetic long-range ordering (see Fig. 7.1).

The field dependence of the magnetization (M) of LNMO, shown in the inset of Fig. 7.1,

shows highest saturated magnetization at 5 K and a 5 T applied magnetic field to be

equal to 4.96 µB/f.u., which is very close to the full magnetization of 5.0 µB/f.u. if one

considers Ni to be in +2 state and Mn to be in +4 state.

Additionally, Nyrissa et.al. [10] showed a large magnetic field induced changes in the

dielectric properties of La2NiMnO6 at temperature as high as 280 K, as shown in Fig. 7.2.

Two important points to be noted are:

• The magnitude of the jump in dielectric constant is more than the electronic con-

tribution of insulators such as LNMO.
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Fig. 7.1: Magnetic susceptibility χ(T ) data as measured by Nyrissa et.al. [10], at 1 T on zero-field (ZFC)
and field cooling (FC). Insets show a field dependent magnetization data at 5 K (upper right).

Fig. 7.2: temperature dependence of the dielectric constant at 10 KHz for 0, 0.1 and 1 T applied field.
Taken from Ref.[10].
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• The jump in the dielectric constant at H = 0 T, occurs at a temperature Tjump

below Tc and Tjump becomes closer to Tc upon application of a magnetic field.

The origin of such dielectric anomaly has been addressed in the first part of this

chapter along with a explanation of the ferromagnetic behavior. In the second part we

additionally investigate the Born effective charges Z∗ that describe the coupling between

electric field and atomic displacements for LNMO.

The chapter is organized as follows: §: 7.2 provides the structural details of LNMO.

§: 7.3 contains the computational details. In §: 7.4, we describe the basic electronic

structure of LNMO. §: 7.5 explains the ferromagnetic behavior in LNMO. The origin of the

experimentally observed dielectric anomaly has been addressed in §: 7.7. §: 7.7 provides

the calculated Born effective charges Z∗ on LNMO and the microscopic understanding

of the calculated Born effective charges has been investigated. We end the chapter with

concluding remarks §: 7.8.

7.2 Structural details

Fig. 7.3: Crystal structure viewed along the pseudocubic [111] direction revealing the high-temperature
rhombohedral structure of LNMO. The violet (dark gray) and orange (light gray) colored octahedra
denote the NiO6 and MnO6 octahedra, respectively. The La atoms shown as big balls sit in the hollow
formed by NiO6 and MnO6 octahedra.

LNMO, having the general structure of a double ordered perovskite (A2BB′O6), is

distorted from the ideal double perovskite, and the amount of distortion changes as the

temperature varies. The structure of La2NiMnO6 is rhombohedral (R3̄) at high tempera-

ture (is shown in Fig. 7.3) and transforms to monoclinic (P21/n) at low temperature, with
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these two structures coexisting over a wide temperature range [11, 13]. In view of the fact

that the positions of light atoms are often not well characterized within the experimental

technique, we have carried out structural optimization of both rhombohedral (RH) and

monoclinic (MC) phases where the internal degrees of freedom associated with La and

O atoms have been optimized, keeping the lattice parameters fixed at experimentally de-

termined values [11]. The relaxed structural parameters of the rhombohedral FM state

(see Table 7.1) agree well within 3% with experimental ones proving the reliability of

our calculation scheme. The position of O atoms, in particular, the x coordinate of O3

oxygen of the MC phase, however, differ noticeably (a deviation of about 22%) from the

experimental values (compared Table 3 in Ref.[11]). Our results may provide basis to fur-

ther refinement of the experimental structure. Each NiO6 octahedra in the rhombohedral

phase is tilted with respect to MnO6 octahedra giving rise to the NiOMn bond angle of

157◦. The tilting is further increased by 2◦ in the monoclinic phase.

Table 7.1: Energy-minimized structural parameters of LNMO. Lattice constants have been kept constant
at the experimental values.

Rhombohedral

a(Å) b(Å) c(Å) x y z

5.474 5.474 5.474 La 0.24980 0.24980 0.24980

α β γ Ni 0.0 0.0 0.0

60.671 60.671 60.671 Mn 0.5 0.5 0.5

O 0.81403 0.67182 0.25889

Monoclinic

a(Å) b(Å) c(Å) x y z

5.467 5.510 7.751 La 0.00838 0.03781 0.24968

α β γ Ni 0.0 0.5 0.0

Mn 0.5 0.0 0.0

90.000 90.119 90.000 O1 0.22344 0.20903 0.04140

O2 0.29189 0.27756 0.45700

O3 0.42219 0.01454 0.24243

7.3 Computational details

We used a combination of two types of methods, namely, (a) muffin-tin orbital based

linear muffin-tin orbital (LMTO) and Nth order muffintin orbital (NMTO) methods,

and (b) plane wave-based methods. In the latter, we used ultrasoft pseudopotentials
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with an energy cutoff of 25 Ry (150 Ry) on the plane wave basis for wave functions

(charge density) and a 6×6×6 mesh of k points in sampling the Brillouin zone for a

phase with the unit cell containing one formula unit and equivalent for other phases. In

particular, the structural optimization and phonon calculations have been carried out

using QUANTUM ESPRESSO and effective charges and dielectric response have been

carried out using ABINIT. The analysis of hopping interactions by constructing effective

orbitals, on the other hand, has been carried out within the framework of NMTO. In our

LMTO and NMTO calculations, we have used four different empty spheres to achieve the

space filling. We used a spin-polarized generalized gradient approximation (GGA) to the

exchange correlation functional.

The computation of Born effective charges has been carried out with the plane-wave

pseudopotential method as implemented in the ABINIT code. We have carried out the

analysis of the contribution of the different set of bands to the BECs of different ions,

a technique known as band-by-band decomposition [12]. In this technique, individual

contributions are obtained by considering the Bloch functions associated with a particular

set of bands as elements of overlap matrix.

7.4 Basic electronic structure
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Fig. 7.4: DOS of LNMO in geometry optimized rhombohedral and monoclinic phases.

We determined the electronic structure of geometry optimized FM LNMO, for rhom-

bohedral and monoclinic phases using the LMTO basis, as well as using the plane wave

basis. Both methods resulted in similar features in the computed density of states and
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band structures, and insulating solutions for both RH and MC phases. The spin resolved

partial density of states (DOS) of LNMO in the rhombohedral phase, is shown in the

topmost panel of Fig. 7.4. Below -2 eV the predominant contribution is from O-2p states.

The octahedral surrounding of Mn and Ni atoms split the Mn- and Ni-d manifolds into t2g

and eg levels. In the up-spin channel, the Ni-t2g and Ni-eg levels are found in the energy

range ∼ −2 eV to Fermi energy and show a significant mixing with Mn-d states and O-p

states. In the down-spin channel the Ni-t2g bands are located between O-p states and the

Fermi level, while Ni-eg states lie ∼1.2 eV above the Fermi level. This corresponds to the

nominal valence of Ni2+ (d8: t62g e
2
g). In the up-spin channel the Mn-t2g bands are localized

between Ni-t2g and Ni-eg bands and are filled, while the Mn-eg bands are separated by

a gap of ∼2.5 eV from the Mn-t2g bands and remain empty. In the down-spin channel,

both Mn-t2g and Mn-eg bands are located above Fermi level in the energy range ∼1.5 to

5 eV. This leads to conclusion that the oxidation state of Mn is nominally 4+ (d3: t32g e
0
g),

which agree with the Mn NMR and x-ray absorption spectroscopy results [14, 15], though

disagree with one of neutron diffraction study [13]. Our spinpolarized LMTO calculations

gave a moment of 3.0 µB at the Mn site within a muffin-tin (MT) radius of 1.32 Å, which

agree with the experimental value of 3.0 µB [10]. The magnetic moment at the Ni site,

for a MT radius of 1.52 Å, is found to be 1.43 µB, which is less than the experimentally

measured value of 1.9 µB. The residual moment is found to reside at the O sites giving

rise to the total magnetization of 5.0 µB in agreement with the experimental value [10].

The spin resolved DOS in the monoclinic structure is shown in the bottommost panel of

Fig. 7.4. The basic nature of the DOS is similar to that of rhombohedral phase of LNMO.

The occupation of the Ni-d states and Mn-d states suggests again the nominal oxidation

states of Ni and Mn ions to be 2+ and 4+ , respectively. The moments are found to be

2.91 µB within a MT radius of 1.38 Å at the Mn site, 1.35 µB at the Ni site within a MT

sphere of radius 1.52 Å , and ∼ 0.10 µB (for 0.95 Å MT radius) at the O site, giving rise

to ∼ 5.0/f.u. total magnetic moment, which is again in agreement with the experimental

findings.

7.5 Ferromagnetism - The extended Kugel-Khomskii

model

LNMO being an insulator, the ferromagnetism in this compound is expected to be dom-

inated by the localized superexchange kind of interaction, resulting from the interaction

of the half-filled d orbital of one metal ion with the vacant d orbital of another metal ion

through anion p orbital. We used an extended Kugel-Khomskii model [16] that includes

the hybridization between half-filled Ni-eg orbitals and Mn-t2g orbitals, as well as the

hybridization between half-filled Ni-eg orbitals and vacant Mn-eg orbitals, as illustrated
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in Fig. 7.5. The interaction between Ni-eg and Mn-t2g is forbidden for parallel alignment

between Ni and Mn spins, therefore the energy gain (E↑↑e,t) is equal to zero. However this

interaction is allowed for anti-parallel arrangement between Ni and Mn spins given by the

energy gain,

E↑↓e,t = −4

∑
m,m′(tem,tm′ )2

(U + ∆e,t)
(7.1)

where tem,tm′ and ∆e,t represent the virtual hopping integral and on-site energy differ-

ences between Ni-eg and Mn-t2g states, respectively. The summation m,m′ runs over all

half-filled eg and half-filled t2g orbitals at Ni and Mn sites, respectively. U is the on-site

Coulomb interaction and JH denotes the Hund coupling.
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Fig. 7.5: All super exchange interactions between Ni-d states and Mn-d states. The upper panel cor-
responds to superexchange interactions between half-filled Ni eg and half-filled Mn t2g states, while the
lower panel corresponds to superexchange interactions between half-filled Ni eg and empty Mn eg states.

On the other hand the interactions between half-filled Ni-eg orbitals and vacant Mn-

eg orbitals are allowed for both parallel and anti-parallel alignments between Ni and Mn

spins. The corresponding energy gains are,

E↑↑e,e = −4

∑
m,m′(tem,em′ )2

(U + ∆e,e − JH)
(7.2)

122



Section 7.5

and

E↑↓e,e = −4

∑
m,m′(tem,em′ )2

(U + ∆e,e)
(7.3)

for parallel and anti-parallel alignments between Ni and Mn spins, respectively. tem,em′

and ∆e,e represent the virtual hopping integral and on-site energy differences between

Ni-eg and Mn-eg states, respectively. The summation m,m′ runs over all half-filled eg

and empty eg orbitals at Ni and Mn sites, respectively. The virtual hopping of parallelly

aligned spins is allowed and is favored over the virtual hopping of antiparallelly aligned

spins due to the energy gain via the Hund coupling JH .

The net Ni-Mn interaction JNi−Mn is given by,

JNi−Mn = 4

∑
m,m′(tem,tm′ )2

(U + ∆e,t)
− 4

∑
m,m′(tem,em′ )2JH

(U + ∆e,e − JH)(U + ∆e,e)
(7.4)

The construction of effective Ni- and Mn-d orbitals carried out by integrating out O

and La orbital degrees of freedom and keeping active only the Mn- and Ni-d degrees of

freedom, using NMTO downfolding method. This procedure generates the effective Ni-

and Mn-d orbitals (see Fig. 7.6), which takes into account the renormalization from the

integrated-out O and also La degrees of freedom.

Fig. 7.6: Overlap between effective x2 − y2 orbitals, placed at neighboring NiO6 and MnO6 octahedra
of LNMO calculated in the monoclinic phase, showing the superexchange path mediated by the corner-
shared O. Plotted are the orbital shapes (constant-amplitude surfaces) with lobes of opposite signs colored
as black (magenta) and white (cyan), respectively, for Mn (Ni).

The computed sum of squares of the Ni-eg-Mn-t2g and Ni-eg-Mn-eg hopping interac-

tions in the basis of NMTO-Wannier functions turned out to be about 0.02 eV and 0.2

eV, respectively. While the corresponding on-site energy difference ∆e,t and ∆e,e turned

out to be about 0.25 eV and 1.9 eV, respectively. We considered a typical value of 4

eV and JH of 0.9 eV. We assumed that the value of U and JH to be the same between

Ni and Mn. While JH is fairly constant between different elements, U can vary. Mn is

expected to have a smaller U value than Ni. Considering a U value of 3 eV for Mn and 5

eV for Ni, one gets an average U value of 4 eV. Putting these values in Eqn. 7.4 the net

exchange interaction JNi−Mn between Ni and Mn came out to be ferromagnetic with a
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value of about 5 meV. Changing U by 5% to 10%, we found that the calculated effective

JNi−Mn turn out to have a value between 4 and 7 meV. The mean-field Tc computed with

JNi−Mn = 4 eV came out to be 350 K compared to experimental estimate of 280 K. We

also attempted to extract the net magnetic coupling, JNi−Mn, by taking the total energy

difference between two magnetic configuration: (1) parallel arrangement between Ni and

Mn spins, ie FM arrangement. (2) Antiparallel arrangement between Ni and Mn spins, ie

ferrimagnetic (FIM) arrangement. Local density approximation (LDA) total energy dif-

ferences are, however, known to overestimate the value of JNi−Mn due to the local density

approximation over binding problem. Our computed JNi−Mn turned out to be about 14

meV, which overestimate the perturbatively computed JNi−Mn by a factor of about 3.

The introduction of spin-orbit coupling changes the magnitude of JNi−Mn by less than

1%, maintaining the FM nature of JNi−Mn.

7.6 Spin-phonon coupling-Origin of dielectric anomaly

As we have pointed out in the introductory section of this chapter, the electronic contribu-

tion to the dielectric constant ε∞ in LNMO is expected to be smaller than the magnitude

of jump in the dielectric constant. To confirm this point we have calculated the electronic

contribution ε∞ for FM and FIM magnetic configurations. Note that any other different

spin arrangement other than the FM spin arrangement arrangement would have been

equally qualified for this purpose. The charge states of Ni and Mn in the FIM state are

found to remain same as that in the FM state. The computed values are equal to 22 and

20 for FM and FIM phases, respectively. Compare to the jump in dielectric constant,

which is about 80, these values and difference in their magnitude are small.

Therefore we expect the origin of this coupling between magnetic field and dielectric

response to emerge from the couplings between spin and structure, i.e., phonons. To

determine the coupling between spin and various phonons, we studied the response of

optimized FM rhombohedral structure to changes in magnetic ordering: e.g., changes in

phonon frequencies with changes in magnetic ordering. We determined changes in phonon

frequencies upon changing the magnetic configuration from FM to FIM phase. Hellmann-

Feynman forces acting on atoms in the FIM phase, giving us the lowest order coupling

between spins and phonons, which is linear in atomic displacements. We found that these

forces are equal and opposite for pairs of atoms; hence, this coupling is zero for any IR-

active modes and should have no direct implications to the observed dielectric anomaly.

Next, we determined the Γ-point phonons for the rhombohedral structure with FM and

FIM ordering. Shifts in the phonon frequencies give the coupling between spins and atomic

displacements at the second order. Since the rhombohedral structure is unstable at T =

0 K, we find two marginally unstable modes (31i and 19i cm−1), which are IR inactive

and couple strongly with spins: their frequencies change to 64i and 63i cm−1 in the FIM
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Fig. 7.7: Phonon spectra of rhombohedral LNMO in FM (top panel) and FIM (bottom panel) states.
The arrows show the shifting of dominant IR-active phonon modes. The inset shows the displacement
of atoms corresponding to the lowest frequency IR-active mode. The angle between the dotted lines
connecting the Ni-O (at the center of the oxygenoctahedra) and O-Mn (rightmost corner of the cell) is
affected by this phonon.

phase. We find that frequencies of the lowest energy IR-active phonons soften from 91.3,

149, 228, and 255 cm−1 in the FM phase to 65.5, 120, 184, and 199 cm−1, respectively

(indicated by arrows in Fig. 7.7), exhibiting a strong coupling with spin. This may

be compared with the recently studied case of CdCr2S4 [17] where the significant polar

mode was found only at a frequency of 300 cm−1. This results in a change in the static

dielectric constant from 119 in the FM state to 221 in the FIM state, which is dominated

by the softest IR-active mode (see inset of Fig. 7.7) with a contribution of 77 and 185,

respectively. Atomic displacements in this softest mode are such that they would make

the Ni-O-Mn angles closer to 180◦, in an average sense, leading to enhancement of the

superexchange interaction. The decrease in phonon frequency for the spin-paired Ni-Mn

in the FIM phase compared to spin-antipaired Ni-Mn in the FM phase can be explained

by analyzing the spin Hamiltonian JSi.Sj and noting that the magnetic superexchange
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coupling J depends on Ni-O-Mn, θ, as cos2(θ). Expanding cos2(θ), about the equilibrium

value of Ni-O-Mn, θ0
∼= 157◦, and assuming θ = θ0 + u, u being the displacement, the

spin-phonon coupling turns out to be positive for the term linear in u and negative for the

term quadratic in u. The latter effectively gives a positive change in phonon frequency due

to the additional negative sign, associated with the FM nature of the magnetic interaction

[cf. Eqn. 7.4].

7.7 Born effective charges in LNMO

Dielectric response of a phonon is determined primarily by its frequency and the electric-

dipole moment p. The latter is given by the Born effective charge [18] (BEC) tensor Z∗κ,αβ
through the relationship:

pα = Z∗κ,αβτκ,β (7.5)

where τκ,β is the movement of an ion κ along the direction β. Physically, Z∗ measures

the microscopic current flowing across the sample while the ions are adiabatically dis-

placed. Such currents are responsible for building up the spontaneous polarization when

ions are displaced from the centrosymmetric position to the ferroelectric structure [19].

In another physical interpretation, it gives the force F the ion feels in the direction α

through interaction with the electric field E in direction β,

Fκ,α = Z∗κ,αβEβ (7.6)

Z∗ is therefore a measure of the strength of electrostructural coupling of an insulating

material. Being related to dynamical changes of the hybridization between various ions

[20], values of Z∗ are often found to be highly nontrivial and can reach values twice as

large as the static nominal ionic changes. While in simple high-symmetry insulators, the

Z∗ matrix is typically isotropic with only nonzero identical diagonal components for a

general case Z∗ can have both diagonal and off-diagonal components which need not to

be even symmetric.

Our calculated BECs of La, Ni, and Mn (shown in Table- 7.2) follow the rhombohedral

site symmetry, with a threefold axis along pseudocubic [111] direction, while that at

the O site is lowered, leading to strong anisotropy of the oxygen Z∗ tensor. We found

anomalously large charges at Mn site (+6 - +7, significantly larger compared to its nominal

valence of +4), similar to earlier report on CaMnO3 [21]. The striking feature appears

in the Born effective charges of Ni, which show anomalously large antisymmetric off-

diagonal components in the Born effective charge matrix, though the diagonal elements

have a value close to the nominal charge of Ni(+2). More interestingly we found that the

largeness of these antisymmetric off-diagonal components depends sensitively upon the
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Table 7.2: Calculated Born effective charge tensors at the La, Ni, Mn and O sites of La2NiMnO6 at FM
and FiM phases. Note the presence of large, off-diagonal elements which are anti-symmetric specially in
case of Ni. Changing the magnetic ordering between Ni and Mn from FM to FiM has profound effect in
terms of making the anti-symmetric off-diagonal components at Ni weaker.

Ferromagnetic Ferrimagnetic

Z∗La
(T )

 4.52 0.0 0.

0.0 4.52 0.

0. 0. 4.38


 4.57 −0.11 0.

0.11 4.57 0.

0. 0. 4.31



Z∗Ni
(T )

 2.48 3.23 0.

−3.23 2.48 0.

0. 0. 2.24


 2.03 1.22 0.

−1.22 2.03 0.

0. 0. 1.64



Z∗Mn
(T )

 6.44 −0.37 0.

0.37 6.44 0.

0. 0. 6.52


 7.51 −0.98 0.

0.98 7.51 0.

0. 0. 6.54



Z∗O1
(T )

 −3.70 −0.48 0.91

0.48 −2.28 −0.35

0.91 0.35 −2.92


 −3.67 0.21 0.93

0.21 −2.54 −0.22

1.01 −0.18 −2.80



Z∗O2
(T )

 −2.64 0.14 −0.15

1.09 −3.35 0.97

−0.76 0.62 −2.92


 −2.64 0.38 −0.28

0.38 −3.59 0.92

−0.35 0.97 −2.80



Z∗O3
(T )

 −2.64 −1.09 −0.76

−0.14 −3.35 −0.62

−0.15 −0.97 −2.92


 −3.03 −0.60 −0.65

−0.60 −3.21 −0.70

−0.66 −0.79 −2.80
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magnetic ordering between Ni and Mn. While the change in magnetic ordering from FM

to FIM state affects almost all the matrix elements of Born effective charge tensor, the

most significant change occurs in the offdiagonal component of the Born effective charge

of Ni. This implies that the anomalous and antisymmetric Born effective charge of Ni is

intimately connected with the magnetic coupling between Ni and Mn, thereby giving rise

to a magnetism-dependent electrostructural coupling.The work by Massidda et.al. [22]

in this context carried out for transition-metal monoxides showed the effect of magnetic

anisotropy on Z∗ in terms lowering of symmetry of the magnetic space group; while in the

current example the magnetic ordering changes the hybridization and therefore influences

the magnitude of the components of Z∗ without effecting the symmetry. The effect is

therefore of different origin than what has been described in Ref.[22].

We note that the Z∗ of oxygen atoms also undergo interesting changes due to their

hybridization with metal ions. The antisymmetric components of Z∗ of oxygen atoms

weaken (almost vanishes) significantly in the FIM state relative to FM one. Focusing

on to Mn, we find that both diagonal and off-diagonal antisymmetric components are

enhanced in the FIM phase compared to that in FM phase.

7.7.1 Electronic origin

Previous work [20] in connection with contributions of change in hybridization to the

anomalous charge has shown that it originates primarily from a modification of the inter-

actions between occupied and unoccupied electronic states. Examination of level diagram

(Fig. 7.8) reveals that such situation arises in case of interaction between Ni t2g and Mn

t2g symmetries, with Ni t2g states being filled and Mn t2g states being empty for the

minority-spin channel in ferromagnetic case and for the majority-spin channel in case of

ferrimagnetic spin alignment. Similarly it arises between Ni eg and Mn eg symmetries,

with Ni eg states being filled and Mn eg states being empty for the majority-spin channel

for both ferromagnetic and ferrimagnetic cases. Therefore we examine one of the Wannier

functions centered on Ni and having t2g symmetry in minority (majority) spin channel

for the ferromagnetic (ferrimagnetic) phase for two cases: (a) equilibrium rhombohedral

structure and (b) a structure distorted with Ni displaced by 1% of the lattice constant

along the crystallographic x axis (see Fig. 7.9). We notice the central y′z′ symmetry,

defined in the local coordinate system with z′ axis pointing along one of the Ni-O bond,

while the tails in the immediate neighborhood are shaped according to oxygen py′ and pz′

orbitals which form antibonds with the central Ni y′z′ symmetry. The end of these tails

consist of t2g orbitals (largely unoccupied) of the next-nearest-neighbor Mn atoms,leading

to a finite mixing of orbitals of Ni and Mn. The effective Ni-centered Wannier function is

longer ranged in the ferromagnetic phase having a spread of ≈ 3.6 Å compared to that

in the ferrimagnetic phase, having a spread of ≈ 2.7 Å. This is due to the fact that (cf.

Fig. 7.8) Mn t2g states are close in energy to Ni t2g down-spin states (∆ ≈ 1.6 eV) in the
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Fig. 7.8: Energy level positions of Ni and Mn d levels with respect to Fermi energy Ef as obtained in
DFT calculation. The upper (lower) panel corresponds to ferromagnetic (ferrimagnetic) spin arrangement
between Ni and Mn spins.

ferromagnetic phase while Mn t2g states are farther away from Ni t2g up-spin states (∆

≈ 2.6 eV) in the ferrimagnetic phase, resulting in stronger Ni-Mn hybridization in the

ferromagnetic phase.

As the angle Ni-O-Mn increases in one quadrant and decreases in the opposite quad-

rant upon displacement of Ni atom (cf. Fig. 7.9(a)), oxygen-Mn bonding along the tails

strengthens along one direction and weakens along the opposite direction implying a net

transfer of charge. The most striking and key observation is that in addition to the net

charge-transfer effect, the Mn t2g-like tails rotate in quadrants that show accumulation

of charge (see Fig. 7.9(c)). This mechanism is different from the charge transfer along

a line through unit cell, and gives a shift in the center of Wannier function along y (-x)

direction when Ni atom is off-centered along x (y) direction. The center of gravity of

Wannier function with 1% displaced Ni atom along x direction shows a net displacement

of about 0.05 Å along y direction, which is about 1.5% of the lattice constant. Thus, this

is responsible for the large off-diagonal component of the Z∗ tensor of Ni. Change in the

alignment of Ni and Mn spins from FM to FIM leads to weaker hybridization between Ni
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a c

b

Ni

Mn

O

Fig. 7.9: (a) Atomic structure of La2NiMnO6 in the equilibrium configuration compared to the structure
where Ni atom has been moved along the rhombohedral x axis. The green, yellow and orange balls
mark the positions of Ni, Mn, and O atoms. The lighter and darker green balls indicate the positions
of Ni at equilibrium and that after displacement. The movement of Ni atom strongly influences the
∠Ni-O-Mn, increasing it one quadrant and decreasing it in the opposite quadrant from the equilibrium
∠Ni-O-Mn. (b) The rhombohedral global coordinate system and the oxygen-based octahedral coordinate
system. The unprimed and primed coordinate systems represent the rhombohedral coordinate system (z
axis pointing along the pseudocubic [111] direction) and the oxygen-based octahedral coordinate system
(z′ axis pointing along one of the Ni-O bond and x′ axis pointing along the Ni-O bond approximately
perpendicular to it.) (c) Plot of effective Ni y′z′ Wannier functions. Plotted are the orbital shapes
(constantamplitude surfaces) with the lobes of opposite signs colored as red (light gray) and blue (dark
gray). The upper two panels correspond to calculations in the equilibrium (left panel) and Ni displaced
(right panel) conditions in the ferromagnetic phase, while the lower panels correspond to calculations in
the equilibrium (left panel) and Ni displaced (right panel) conditions in the ferrimagnetic phase. The
arrows marked in the Wannier functions in the ferromagnetic phase show the sense of rotation of the
orbital tails.
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and Mn, and hence a much smaller antisymmetric component of the Z∗. Examination of

BEC tensor shows diagonal component of Mn to be more anomalous compared to that of

Ni, which is explained in terms of the dynamical charge transport from/to oxygen atoms.

Mn being in d3 state, is more d0 like compared to Ni, which is in d8 state. Using simple

criterion of capacity of an orbital available to exchange charge with O2, one finds that

the maximum permitted values for Ni2+ in d8 state is +2, and that for Mn3+ in d3 state

is +5, allowing for a maximum value of BEC of +4 and +8 for Ni and Mn, respectively.

7.7.2 Comparison with other compounds

LiNbO3, very similar in structure with rhombohedral symmetry to LNMO, was also re-

ported [23] to exhibit a large antisymmetric component of Born charge tensor of Nb. As

Nb is in the d0 state in LiNbO3, following the orbital filling criterion, the magnitude of

the diagonal components of Z∗Nb (8.3) is much larger than the off-diagonal ones (2.1), in

contrast to LNMO. Due to symmetry, the antisymmetric components of Z∗ of two Nb ions

in LiNbO3 are opposite in sign and cancel, in contrast to very disparate magnitudes of

the antisymmetric components of Z∗ of Ni and Mn in LNMO. The band-by-band decom-

position technique [12] for analysis of Z∗ in case of LNMO reveals that the antisymmetric

component of Z∗ = 3.2 of Ni arises primarily from O p and metal 3d states with con-

tributions of 5.5 and 1.8, respectively, confirming once again the role of the metal (Mn)

3d states. In comparison, the antisymmetric charge of 2.1 for Nb in LiNbO3 is mostly

contributed by oxygen p states. Importantly, Nb being in d0 state does not exhibit the

interesting effects of magnetic nature as observed for LNMO. Referring to Table- 7.2

and comparing with Table-VI in Ref.[23] we make the interesting observation that upon

changing the magnetic ordering from FM to FiM in La2NiMnO6, the behavior to the Z∗

matrix becomes more akin to LiNbO3, with nearly symmetric off-diagonal components of

Z∗ at oxygen sites and nearly similar antisymmetric off-diagonal components of Z∗ be-

tween Ni and Mn (in case LiNbO3 they are identical between two Nb ions in the unit cell

due to symmetry). Presence of large off-diagonal elements of Z∗ have been also observed

for relaxor PbMg1/3Nb2/3O3 [24], but like LiNbO3 it also does not show the interesting

effects of magnetic nature.

While the symmetry of the structure allows antisymmetric Born charge in LNMO, its

magnitude depends on the energies of the d orbitals and hence on the type of magnetic

ordering. Being motivated by this finding, we determined the Born effective charges of

another insulating double perovskite, namely, Sr2CrOsO6 [25], which also has a rhom-

bohedral symmetry in certain temperature range. Though, we observe antisymmetric

off-diagonal Born effective charges at O s site, driven by the symmetry of the rhombo-

hedral phase, its magnitude is found to be much smaller (≈ 0.3). The observed case

in LNMO is therefore a rare event where the geometry, chemistry, and magnetism work

hand-in-hand to produce such a spectacular effect.
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7.8 Summary and outlook

We carried out first-principles density functional calculations to examine the electronic

and magnetic structure of La2NiMnO6, in particular, to understand the origin of the

dielectric anomaly reported recently. We could correctly reproduce the ferromagnetic

insulating behavior of the compound, the ferromagnetism being governed by the superex-

change interaction. Our study further showed the presence of soft IR-active phonon modes

exhibiting strong coupling with spin, which explains the observed dielectric anomaly. The

fact that the jump in the dielectric constant at H = 0 T, occurs at a temperature Tjump

below Tc happens because close to Tc the magnetic moment is not fully developed due

to thermal fluctuation while at a lower temperature the moment gets fully developed

and makes the effect of coupling to phonon degrees of freedom appreciable enough to

observe the jump in the dielectric constant. This is corroborated by the fact that Tjump

becomes closer to Tc upon application of a magnetic field, which helps overcome the

thermal fluctuation and enhance the magnetization. Note that the superexchange driven

B-site magnetism based dielectric anomaly discussed here is complementary to the mecha-

nism of the low-temperature dielectric anomaly discussed for EuTiO3 [26], which is A-site

based weak magnetism driven. Additionally, we have provided a first-principles theoreti-

cal evidence for a magnetism-dependent electrostructural coupling in LNMO: it exhibits

an anomalously large antisymmetric component of the BEC matrix that depends sen-

sitively on the magnetic order. Fundamental understanding developed here in terms of

aspects of symmetry and electronic structure responsible for the fascinating properties of

LNMO should stimulate further efforts in designing new materials exhibiting magnetism-

dependent electrostructural coupling. This would lead to changes in the intensity of the

IR spectra upon application of magnetic field as well as rotation of the plane of vibration

of Ni upon shining a plane polarized IR radiation, with respect to the plane of polarization

of the incident IR radiation.
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Chapter 8

Conclusion

The interplay between charge, orbital and spin degrees of freedom in transition metal

oxides manifests the wide range of properties reported in literature. Understanding this

complex interplay is a great challenge for modern condensed matter physics. In this thesis,

we have picked up few transition metal oxides and studied their properties using Density

functional theory (DFT) as well as first principles derived model Hamiltonian approach

combined with many body techniques like, quantum Monte Carlo (QMC) method, dy-

namical mean field theory (DMFT) and exact diagonalization (ED). The main findings

are listed below.

Chapter-3 The underlying magnetic structure of the spin-gapped system CuTe2O5 were

investigated using first-principles electronic structure calculations based on the NMTO-

downfolding technique. The proposed spin model was solved by quantum Monte Carlo

method.

The main findings are:

1. The strongest Cu-Cu interaction in CuTe2O5 is the one between fourth nearest

neighbor mediated by two O-Te-O bridges (J4) followed by the interaction mediated

by a single O-Te-O bridge (J6). This is in contrast to the fact that J6 was found

in Ref.[Phys. Rev. B 74, 174421 (2006))] employing the extended Hückel tight-

binding (EHTB) study to be the strongest interaction. We also obtained that the

Cu-Cu interaction within the structural dimer unit (J1) is rather weak as opposed

to the findings of the EHTB study, though both ours and the EHTB study found

the structural dimer interaction not to be the leading interaction. The underlying

spin model for CuTe2O5 derived out of our calculations is therefore different from

that suggested in Ref.[Phys. Rev. B 74, 174421 (2006))].

2. The computed magnetic susceptibility for the proposed model by performing quan-

tum Monte Carlo (QMC) simulations (stochastic series expansion) showed good

agreement with the experimental observations.

3. In view of the fact that the magnetic susceptibility is often found to be an insensitive

quantity to the details of the magnetic structure, we also calculated temperature
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and magnetic-field dependent magnetization as well as the specific heat as a function

of temperature. These results need to be tested in terms of further experimental

investigations to resolve the underlying microscopic model for CuTe2O5 completely.

Chapter-4: Our attempt was to reveal the origin of the contrasting properties of

La2CuO4 in T′ phase compared to T phase. It was experimentally reported that while

La2CuO4 in the T structure is strongly insulating, the same in T′ structure appears to

be conducting with a difference in resistivity of orders of magnitude. Our first clue of

investigation was the difference in their crystal structure, which is described as the change

in position of the apical oxygen to a position below or above the planar oxygens of CuO2

plane. We used dynamical mean field theory (DMFT) together with density functional

theory within LDA approximation, to incorporate the correlated nature of the electrons.

The main findings are:

1. Our study showed that the change in position of the out-of-plane oxygen between

T and T′ structures, resulting into significant changes in the one-particle electronic

structure.

2. These differences in the one-particle electronic structure translates into insulating

solution in case of T structure and correlated metallic situation in case of T′ structure

upon incorporation of correlation effect.

Chapter-5 The unusually high ferromagnetic (FM) transition temperature in the dou-

ble perovskite system Sr2FeMoO6 was explained in terms of a kinetic-energy driven mech-

anism that recently proposed a destabilization trend of the FM phase as one doped the

system with electrons through model calculations. There were two restrictions in the

model calculations: (i) the calculations were carried out in two dimension, (ii) only single

band were considered. However these restrictions are not strictly true for real systems.

We therefore checked this scenario in La3+ ion doped SFMO system, that mimic electron

doping into the system, using first-principles calculations which take into account all the

structural and chemical aspects correctly, combined with the with exact diagonalization

of Fe-Mo Hamiltonian constructed in a first-principles Wannier-function basis.

The main findings are:

1. Our calculation showed destabilization of the FM phase with the increase of electron

doping and a transition to a kinetic-energy driven antiferromagnetic phase in the

La-rich region, in agreement with the results obtained on the basis of previous model

calculations.
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2. We found that the delicate balance between FM and antiferromagnetic (AFM), is

governed by the extent of hybridization between the localized transition metal (TM)

site (Fe in this case) and delocalized TM site (Mo in this case).

Chapter-6 In the first part of this chapter, employing first principles density functional

calculations, together with solution of the low-energy, model Hamiltonian constructed in

a first principles manner, we explored the origin of magnetism and Tc trend in Cr-based

double perovskite series, Sr2CrB′O6 (B′=W/Re/Os).

The main findings are:

1. From the observed dehybridization effect between Cr-t2g and B′-t2g states together

with the increasing trend of the spin splitting at the B′ site we concluded that there

is a growing intrinsic moment that develops at B′ site.

2. Therefore we proposed that to understand the magnetism in this series one needs

to include the superexchange (SE) between the moment at Cr site and the intrinsic

moment at B′ site together with double exchange.

3. By solving the low-energy model Hamiltonian constructed in a first principles man-

ner with exact diagonalization method we reproduced correct trend of Tc in this

series.

In the second part of this chapter we investigated the magneto optical (MO) effects in

this double perovskite series.

The main findings are:

1. Our study showed a large Kerr rotation of about -2◦ to -2.5◦ in Sr2CrWO6 and

Sr2CrReO6 and a moderately large Faraday rotation of about -0.25×106 deg/cm in

insulating Sr2CrOsO6, justifying their applicability for industrial use as read heads.

Chapter-7 Another double perovskite system La2NiMnO6, was studied in this chapter.

The motivation of this study was twofold: (a) to explain the room temperature semicon-

ducting ferromagnetic behavior of the system, (b) to explore the origin of the magnetic

field induced dielectric anomaly observed experimentally near the ferromagnetic transi-

tion temperature.

The main findings are:

1. Our calculations correctly reproduced the ferromagnetic semiconducting nature of

the system and the theoretically calculated ferromagnetic transition temperature

(Tc) is quite comparable with the experimentally determined one.
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2. Our study revealed the existence of very soft infrared active Γ-point phonons that

couple strongly with spins at the Ni and Mn sites through modification of the

superexchange interaction. We concluded that these modes are the origin for the

observed dielectric anomaly in La2NiMnO6.

3. We found a magnetism-dependent electrostructural coupling in this compound through

the investigation of our calculated Born effective charges.
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